Amt der Tiroler Landesregierung Waldschutz – Luftgüte

August 2015

Auftraggeber: Der Landeshauptmann für den Vollzug von Bundesgesetzen,

Die Landesregierung für den Vollzug von Landesgesetzen, vertreten durch das Amt der Tiroler Landesregierung, Abteilung Waldschutz – Luftgüte, Tel.: 0512/508/DW 4611

6020 Innsbruck, Bürgerstraße 36

Abteilung Umweltschutz, Tel.: 0512/508/DW 3452

Ausstellungsdatum: 12. Oktober 2015

Für die Abteilung Waldschutz – Luftgüte:

Dr. Weber Andreas

Weitere Informationsangebote:

⇒	Teletext des ORF	Seite 621, 622
⇒	Homepage des Landes Tirol im Internet	www.tirol.gv.at/luft

Hinweis: Die Verwendung einzelner Daten ohne Berücksichtigung aller relevanten Messergebnisse kann zu einer Verfälschung der Aussage führen. Eine auszugsweise Vervielfältigung des Luftgüteberichtes ist daher ohne schriftliche Genehmigung der Abteilung Waldschutz/Fachbereich Luftgüte nicht gestattet. Alle erhobenen Luftgütedaten sind kontrolliert und wurden entsprechend den österreichischen Qualitätsanforderungen erfasst. Zur Beurteilung der Messergebnisse wurden auch Wetterdaten der Zentralanstalt für Meteorologie und Geodynamik herangezogen.

Inhaltsverzeichnis

Erläuterung über die Bedeutung der verwendeten Symbole	3
Lage der Messstationen und Bestückungsliste	4
Kurzübersicht über die Einhaltung von Grenzwerten	5
Kurzbericht	6
Stationsvergleich	7
Monatsauswertung der Stationen	
Höfen – Lärchbichl.	10
Heiterwang – Ort / B179	12
Imst – A12	15
Innsbruck – Andechsstraße (Reichenau)	18
Innsbruck – Fallmerayerstraße (Zentrum)	21
Innsbruck – Sadrach	25
Nordkette	28
Mutters – Gärberbach A13	30
Hall in Tirol – Sportplatz	33
Vomp – Raststätte A12	36
Vomp – An der Leiten	39
Brixlegg – Innweg	42
Kramsach – Angerberg.	45
Kundl – A12	48
Wörgl – Stelzhamerstraße.	51
Kufstein – Praxmarerstraße.	54
Kufstein – Festung.	57
Lienz – Amlacherkreuzung.	59
Lienz – Tiefbrunnen	63
Beurteilungsunterlagen aus Gesetzen, Verordnungen und Richtlinien	66
IG-L Überschreitungen	
Auflistung der Überschreitungen nach IG-L	68

Erläuterungen über die Bedeutung der verwendeten Symbole

SO2 Schwefeldioxid

PM2.5 grav. Feinstaub gemäß IG-L (High Volume Sampler und PM2.5 Kopf gesammelte

Tagesproben; durch konditionierte Wägung ermittelter Wert.)

PM10 grav. Feinstaub gemäß IG-L (High Volume Sampler und PM10 Kopf gesammelte

Tagesproben; durch konditionierte Wägung ermittelter Wert.)

PM10 kont. Feinstaub gemäß IG-L (Mittels kontinuierlich registrierender Staubmonitore und

PM10 Kopf gemessene Werte, multipliziert mit dem Defaultfaktor 1,3 oder einem

Standortfaktor, wenn dieser vorhanden ist.)

NO Stickstoffmonoxid NO2 Stickstoffdioxid

O3 Ozon

CO Kohlenmonoxid

HMW Halbstundenmittelwert

max HMW / HMW_MAX maximaler Halbstundenmittelwert max 1-MW / MW1_MAX Maximaler Einstundenmittelwert

max 01-M / MW_01_MAX Maximaler Einstundenmittelwert (stündlich gleitend)

max 3-MW Maximaler Dreistundenmittelwert
max 8-MW / MW8_MAX Maximaler Achtstundenmittelwert

max 08-M / MW_08_MAX Maximaler Achtstundenmittelwert (gleitend aus Einstundenmittelwerten)

TMW / max. TMW Tagesmittelwert / Maximaler Tagesmittelwert

MMW Monatsmittelwert

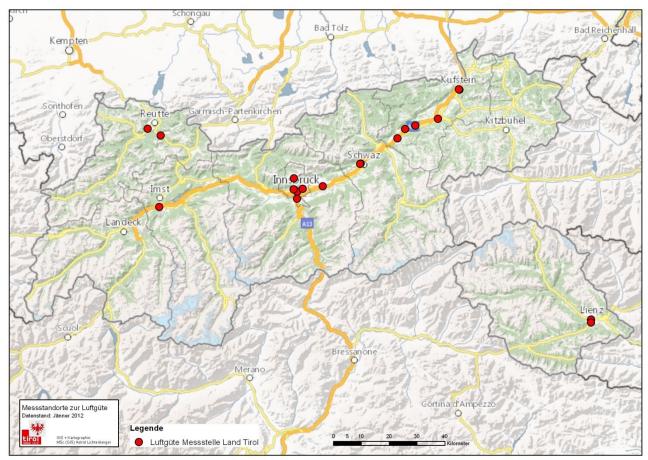
Gl.JMW Gleitender Jahresmittelwert

- Keine Berechnung eines Tagesmittelwertes, da weniger

als 40 Halbstundenmittelwerte vorhanden (lt. ÖNORM 5866)

 mg/m^3 Milligramm pro Kubikmeter $\mu g/m^3$ Mikrogramm pro Kubikmeter

% Prozent = Anzahl Teile in hundert Teilen
% Promille = Anzahl Teile in tausend Teilen


VDI Verein Deutscher Ingenieure

ÖAW Österreichische Akademie der Wissenschaften

EU Europäische Union

IG-L Immissionsschutzgesetz Luft (BGBl. 115/97 i.d.g.F.)

n.a. nicht ausgewertet

	BEST	ÜCKU	NGSLISTE	,			
STATIONSBEZEICHNUNG	SEEHÖHE	SO2	PM10/PM2.5 ¹⁾	NO	NO2	O3	СО
Höfen – Lärchbichl	877 m	-	-/-	-	-	•	-
Heiterwang – Ort / B179	985 m	-	•/-	•	•	•	-
Imst – A12	719 m	-	•/-	•	•	-	-
Innsbruck – Andechsstraße	570 m	-	•/-	•	•	•	-
Innsbruck – Fallmerayerstraße	577 m	•	•/•	•	•	-	•
Innsbruck – Sadrach	678 m	-	-/-	•	•	•	-
Nordkette	1958 m	-	-/-	-	-	•	-
Mutters – Gärberbach A13	688 m	-	•/-	•	•	-	-
Hall in Tirol – Sportplatz	558 m	-	•/-	•	•	-	-
Vomp – Raststätte A12	557 m	-	•/-	•	•	-	-
Vomp – An der Leiten	543 m	-	•/-	•	•	-	-
Brixlegg – Innweg	519 m	•	•/•	-	-	-	-
Kramsach – Angerberg	602 m	-	-/-	•	•	•	-
Kundl – A12	507 m	-	-/-	•	•	-	-
Wörgl – Stelzhamerstraße	508 m	-	•/-	•	•	•	-
Kufstein – Praxmarerstraße	498 m	-	•/-	•	•	-	-
Kufstein – Festung	550 m	-	-/-	-	-	•	-
Lienz – Amlacherkreuzung	675 m	-	•/•	•	•	-	•
Lienz – Tiefbrunnen	681 m	_	-/-	•	•	•	_

¹⁾ An den Stationen Innsbruck/Andechsstraße, Innsbruck/Fallmerayerstraße, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Kurzübersicht über die Einhaltung von Alarm-, Grenz- und Zielwerten August 2015

Bezeichnung der Messstelle	SO2	1) PM10 2)	NO	NO2 1)	03 1)	CO
HÖFEN					Z	
Lärchbichl					M	
HEITERWANG					Z	
Ort / B179					M	
IM ST						
A12	200000000000000000000000000000000000000					
INNSBRUCK					Z	
Andechsstrasse	100000000000000000000000000000000000000				M	
INNSBRUCK						
Fallmerayerstrasse						
INNSBRUCK					Z	
Sadrach			***************************************	***************	M	
NORDKETTE					Z P M	
MUTTERS						
Gärberbach A13						
HALL IN TIROL						
Sportplatz						
VOMP						
Raststätte A12	33333333333					
VOMP						
An der Leiten			************			
BRIXLEGG						
Innweg						
KRAM SACH Angerberg					Z P M	
KUNDL						
A12						
WÖRGL					Z	
Stelzhamerstrasse					M	
KUFSTEIN						
Praxmarerstrasse						
KUFSTEIN					Z	
Festung					M	
LIENZ						
Amlacherkreuzung						
LIENZ						
Tiefbrunnen					M	

	Grenzwerte und Zielwerte der im Anhang enthaltenen Beurteilungsgrundlagen eingehalten
M	ÖAW: Überschreitung der Immissionsgrenzkonzentration für den Menschen bei Stickstoff-, Schwefeldioxid und Ozon
P	ÖAW: Überschreitung der Immissionsgrenzkonzentration für Ökosysteme bei Stickstoffdioxid und Ozon; die
1	Auswertung erfolgt nur für die vegetationsbezogenen Messstellen KRAMSACH/Angerberg und NORDKETTE
ÖZ	ÖAW: Überschreitung der Zielvorstellung für Ökosysteme bei Stickstoffdioxid; die Auswertung erfolgt nur für die
OZ	vegetationsbezogene Messstelle KRAMSACH/Angerberg
V	Überschreitung der Grenzwerte nach VDI-Richtlinie 2310
F	Überschreitung der Grenzwerte der 2. VO gegen forstschädliche Luftverunreinigungen
IZ	Überschreitung von Zielwerten für Stickstoffdioxid oder Schwefeldioxid (BGBl. II Nr. 298/2001) sowie Zielwert zum
12	Schutz von Ökosystemen und Pflanzen (gilt nur für die Messstelle Kramsach/Angerberg).
ΙP	Überschreitung des Grenzwertes für PM10 gemäß IG-L. Da für dieses Kriterium auch eine auf das Kalenderjahr gültige
**	Perzentilregelung gilt, wird die Ausweisung allfälliger Überschreitungen im Jahresbericht vorgenommen.
Z	Überschreitung des Zielwertes zum Schutz der menschlichen Gesundheit für Ozon
	Überschreitung von Grenzwerten für Schwefeldioxid, Stickstoffdioxid oder Kohlenmonoxid gem.
IG	Immissionsschutzgesetz Luft (BGBl. 62/2001) zum Schutz der menschlichen Gesundheit bzw. Überschreitung der
	Informationsschwelle gemäß Ozongesetz.
,	Überschreitung von Alarmwerten für Schwefeldioxid bzw. Stickstoffdioxid gemäss IG-L bzw. der Alarmschwelle
	gemäss Ozongesetz
1)	Die Ausweisung von Überschreitungen von Langzeitgrenzwerten/-zielwerten sowie Perzentilregelungen wird im
1)	Jahresbericht vorgenommen.
2)	In Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg
2)	und Lienz/Amlacherkreuzung wird PM10 mittels gravimetrischer Methode gemessen
	Schadstoff wird nicht gemessen

Kurzbericht für den August 2015

Messnetz

Das Land Tirol betreibt gemäß Immissionsschutzgesetz-Luft (IG-L; BGBl. I 115/1997), dem Ozongesetz (BGBl. I 210/1992) sowie der Messkonzeptverordnung zum Immissionsschutzgesetz-Luft (BGBl. II 358/1998) – jeweils in den geltenden Fassungen - ein Luftgütemessnetz mit derzeit 19 Messstationen.

Dieser Bericht enthält Informationen über die gemessenen Luftschadstoffe Kohlenmonoxid (CO), Schwefeldioxid (SO2), Stickoxide (NO und NO2), Ozon (O3) und Feinstaub (PM10 und PM2,5) sowie über die Verfügbarkeit der Messdaten, und bezieht die Ergebnisse auf die in o. a. Gesetze enthaltenen gesetzlichen Grenz- und Zielwerte sowie auf anerkannte wirkungsbezogene Immissionsgrenzkonzentrationen laut ÖAW. Zudem werden die Vorgaben gem. 2. Verordnung gegen forstschädliche Luftverunreinigungen (BGBl. II 199/1984) mit vollzogen. Die Ergebnisse von Blei/Arsen/Nickel/Cadmium und BaP (Benzo-a-Pyren) im PM10, von Benzol sowie der Eintragsmessungen (über den nassen Niederschlag und Grobstaubniederschlag) werden in Jahresberichten veröffentlicht, da für diese Schadstoffe lediglich Grenz- bzw. Zielwerte auf Jahresmittelwertbasis zu prüfen sind.

Witterungsübersicht – Zentralanstalt für Meteorologie und Geodynamik, Kundenservice Tirol und Vorarlberg:

Für das Prädikat "Spitzensommer 2015" lieferte der August einen ordentlichen Beitrag, in Tirol war es um 2 bis 3 Grad zu warm. 21 °C Mitteltemperatur in der Landeshauptstadt sind ein Plus von 2,5 Grad. Das bedeutet hinter 2003 und 1992 den drittwärmsten August seit 1777. Mit 15 "heißen Tagen" in Innsbruck am Flughafen überschritt das Quecksilber jeden zweiten Tag die 30 °C Marke. Ein durchschnittlicher August hat nur 4 bis 5 solcher Tage. Die dritte Woche im August brachte einen vorübergehenden Luftmassenwechsel und damit verbunden auch die tiefsten Temperaturen. Am 21. August markierten 2,8 °C in Schmirn die kältesten Verhältnisse des Monats in bewohnten Regionen.

Ein Viertel mehr Sonnenscheindauer als im Durchschnitt trug in Nordtirol positiv zur allgemein guten Sommerstimmung in allen Bereichen bei. 258 Sonnenstunden in Innsbruck sind 50 Stunden mehr als man durchschnittlich erwarten könnte. 288 Sonnenstunden im Rekordmonat August 2003 bleiben aber unerreicht. Nur ein schwaches Plus von 5 % ging sich in Lienz mit 241 Sonnenstunden aus.

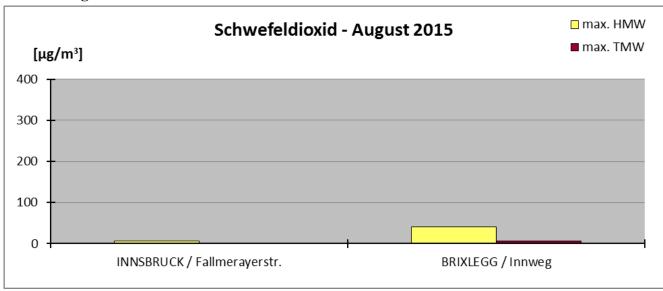
Bei so viel Sonnenschein ist es wenig überraschend, dass beim Niederschlag größtenteils ein Defizit von bis zu 50 % aufscheint. Die größten negativen Abweichungen gab es dabei im Außerfern und Tiroler Unterland. Im Raum Innsbruck und im Tiroler Oberland konnten hingegen auch die Durchschnittswerte erreicht werden. Ein Plus blieb am Monatsende in Osttirol beispielsweise in Sillian mit 143 mm (+ 30 %) stehen.

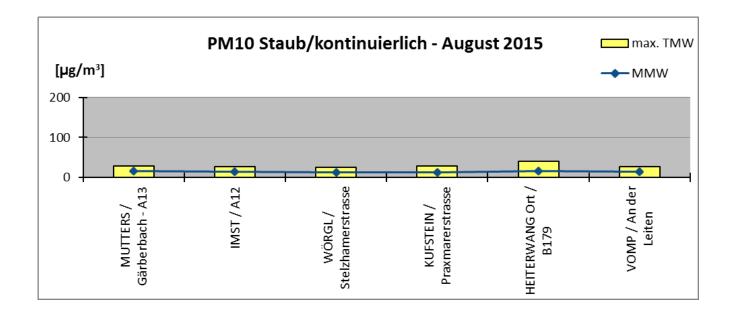
Ungewöhnlich gering war in diesem August auch die Gewittertätigkeit, 3600 Blitzeinschläge wurden registriert. In den letzten 10 Jahren war das der zweitschwächste August in der Blitzstatistik von ALDIS. In Innsbruck verzeichnete der ZAMG Beobachter 5 Tage mit Gewitter, was in etwa nur der Hälfte des Erwartungswertes entspricht.

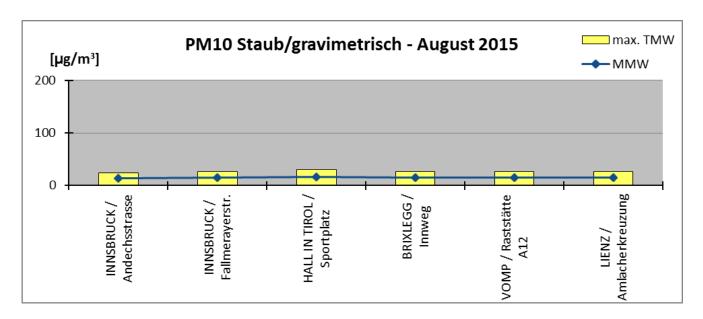
Luftschadstoffübersicht

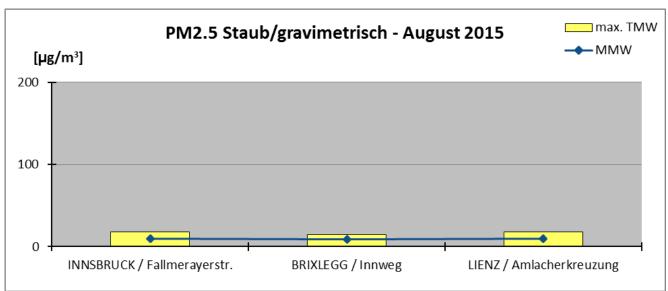
An den beiden **Schwefeldioxid**messstellen wurden durchwegs Monatsmittelwerte im einstelligen Bereich gemessen. Während an der Messstelle INNSBRUCK/Fallmerayerstraße auch alle anderen Kennwerte auf ganz niedrigem Niveau lagen, wurden an der Messstelle BRIXLEGG/Innweg Kurzzeitspitzen von bis zu 40 μ g/m³ (Halbstundenmittelwert) verzeichnet. Die gesetzlichen Grenzwerte gemäß IG-L (Immissionsschutzgesetz-Luft) sowie zweiter Verordnung gegen forstschädliche Luftverunreinigung wurden damit dennoch - bei weitem - nicht erreicht.

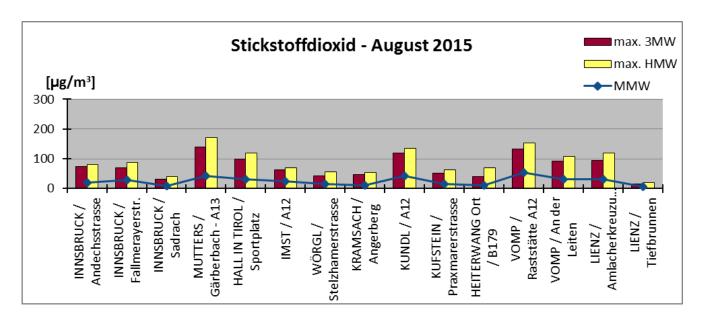
Die PM10- wie auch die PM2.5-Konzentrationen waren mit maximal $16\,\mu\text{g/m}^3$ bzw. $10\,\mu\text{g/m}^3$ durchwegs als gering einzustufen und im Vergleich zum Vormonat leicht rückläufig. Die maximalen Tagesmittelwerte lagen mit Ausnahme der Messstelle HEITERWANG Ort/B179 bei maximal $30\,\mu\text{g/m}^3$. In Heiterwang ergaben sich durch Grabungsarbeiten im Zuge der Verlegung einer Erdgasleitung die höchsten Tagesmittelwerte von bis zu $40\,\mu\text{g/m}^3$. Der Tagesgrenzwert gemäß IG-L von $50\,\mu\text{g/m}^3$ wurde damit im gesamten Messnetz eingehalten.

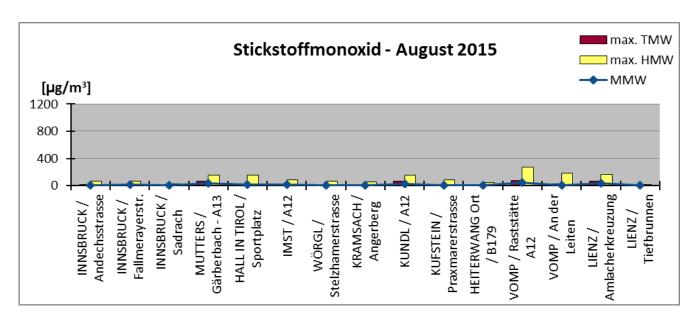

Die höchsten **Stickoxid**konzentrationen wurden an den verkehrsnahen Messstellen in Vomp, Kundl, Mutters und Lienz erfasst, die höchsten **Stickstoffmonoxid**-Messwerte am Standort VOMP/Raststätte A12 (maximalen Halbstundenmittelwert von 270 μ g/m³ und Tagesmittelwert von 72 μ g/m³). Die Kriterien gemäß VDI-Richtlinie 2310 (1000 μ g/m³ als Halbstundenmittelwert sowie 500 μ g/m³ als Tagesmittelwert) wurden damit deutlich unterschritten.

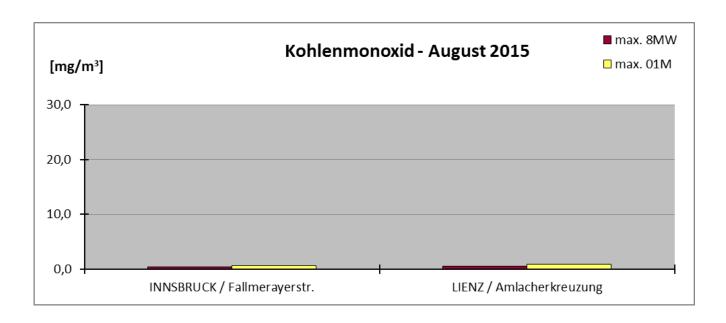

Im Berichtsmonat wurden bei **Stickstoffdioxid** weder gesetzliche Grenz- bzw. Zielwertüberschreitungen gemäß IG-L noch Überschreitungen der ÖAW-Kriterien zum Schutz der menschlichen Gesundheit beziehungsweise der Vegetation festgestellt. Der höchste Halbstundenmittelwert blieb mit 170 μ g/m³ an der Messstelle MUTTERS/Gärberbach A13 relativ deutlich unterhalb des Grenzwertes von 200 μ g/m³. Der höchste Tagesmittelwert lag mit 79 μ g/m³ nur knapp unterhalb des Zielwertes von 80 μ g/m³ und wurde in VOMP/Raststätte A12 gemessen.


Durch die hochsommerlichen Verhältnisse blieb die Ozonbelastung des Julis auch in den August hinein hoch. Die Kurzzeitspitzenbelastungen lagen mit maximal $178~\mu g/m^3$ als Einstundenmittelwert weiterhin nahe an der Informationsschwelle gemäß Ozongesetz von $180~\mu g/m^3$. Der Zielwert gemäß Ozongesetz ($120~\mu g/m^3$ als Achtstundenmittelwert) wurde im gesamten Messnetz mit Ausnahme der Messstelle LIENZ/Tiefbrunnen überschritten. Zudem


wurden im gesamten Messnetz die Kriterien laut ÖAW zum Schutz des Menschen und an den vegetationsbezogenen Standorten NORDKETTE und KRAMSACH/Angerberg die Kriterien laut ÖAW zum Schutz der Vegetation überschritten. Der höchste Achtstundenmittelwert ergab sich bei **Kohlenmonoxid** an der Messstelle LIENZ/Amlacherkreuzung mit 0,5 mg/m³ und lag damit deutlich unter dem IG-L-Grenzwert von 10 mg/m³.

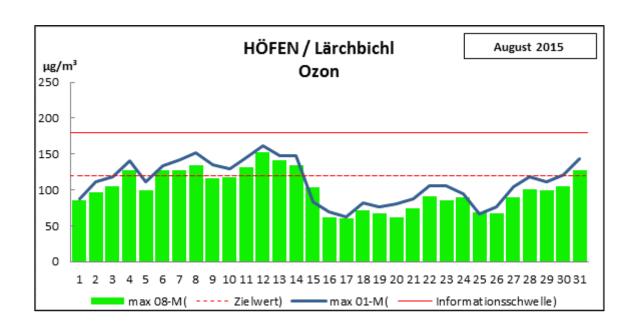

Stationsvergleich





Zeitraum: AUGUST 2015 Messstelle: HÖFEN / Lärchbichl

	SC)2	PM10	PM10	NO		NO2		03					со			
			kont.	grav.													
	μg/	/m³	μg/m³	$\mu g/m^3$	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m^3		
		max			max		max	max	max	max	max	max	max	max	max	max	
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW	
01.									85	85	88	88	89				
So 02.									96	97	112	112	114				
03.									105	106	118	119	119				
04.									128	128	140	140	140				
05.									99	99	111	112	112				
06.									128	129	134	134	134				
07.									128	128	142	142	143				
08.									135	135	152	156	160				
So 09.									116	116	135	136	138				
10.									118	118	129	129	130				
11.									131	131	145	146	146				
12.									153	153	161	161	161				
13.									142	142	147	147	147				
14.									134	134	147	147	147				
15.									103	103	84	85	85				
So 16.									62	62	70	70	73				
17.									60	61	62	63	65				
18.									72	72	82	82	83				
19.									68	68	76	76	77				
20.									62	62	80	80	84				
21.									74	74	88	93	95				
22.									91	92	106	108	108				
So 23.									86	86	106	106	106				
24.									89	89	95	95	96				
25.									69	71	66	68	69				
26.									67	67	76	77	79				
27.									90	90	104	104	105				
28.									101	101	118	118	118				
29.									100	100	112	112	112				
So 30.									105	105	121	121	121				
31.									128	129	144	144	146				


	SO2	PM10	PM10	NO	NO2	03	СО
	ug/m³	kont.	grav.	11 a/m3	11.g/m3	11 a/m3	mg/m³
	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	IIIg/III
Anz. Messtage						31	
Verfügbarkeit						98%	
Max.HMW						161	
Max.01-M						161	
Max.3-MW							
Max.08-M							
Max.8-MW						153	
Max.TMW						111	
97,5% Perz.						-	·
MMW						71	
Gl.JMW							

Zeitraum: AUGUST 2015 Messstelle: HÖFEN / Lärchbichl

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	СО
IG-Luft	•					
Warnwerte						
Grenzwerte menschliche Gesundheit						
Zielwerte menschliche Gesundheit						
Zielwerte Ökosysteme, Vegetation						
Ozongesetz						
Alarmschwelle					0	
Informationsschwelle					0	
langfristiger Zielwert menschliche Gesundheit					9	<u> </u>
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme						
ÖAW: Richtwerte Mensch					15	
ÖAW: Richtwerte Vegetation					n.a.	
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert					_	

 $[\]ddot{\text{U}}\text{1})$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

¹⁾ An den Stationen Innsbruck/Andechsstraße, Innsbruck/Fallmerayerstraße, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

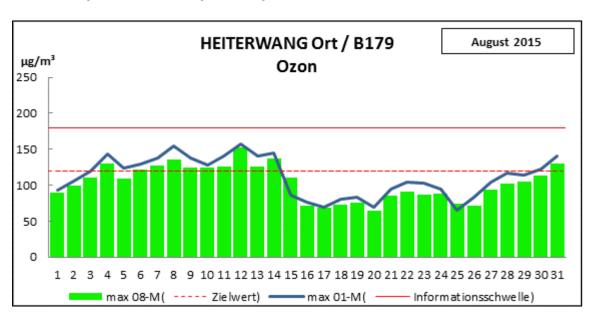
Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Messstelle: HEITERWANG Ort / B179

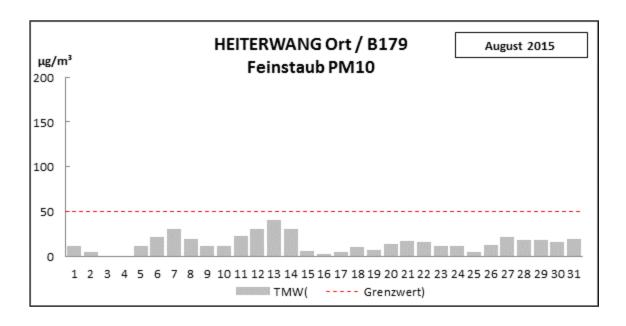
	SC)2	PM10	PM10	NO		NO2		03					СО		
		/ 3	kont.	grav.	/3		ug/m3				/3					
	μg/	ı	μg/m³	μg/m³	μg/m³		μg/m³			l	μg/m³	I			mg/m³	Ī
	TD 4337	max	TD 4XX	TEN ASSI	max	TEN 4337	max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.			11		9	10	21	28	89	89	93	93	94			
So 02.			5		4	5	15	16	100	100	106	106	109			
03.					25	9	18	19	110	110	119	120	121			
04.					17	8	25	29	130	131	143	143	144			
05.			11		14	9	24	27	109	109	124	124	126			
06.			22		21	14	30	39	122	122	130	130	130			
07.			30		11	16	33	39	127	128	138	139	140			
08.			19		8	12	32	35	136	136	154	156	158			
So 09.			11		4	7	18	21	124	124	138	138	140			
10.			11		41	12	42	69	124	124	128	128	129			
11.			23		13	12	28	32	126	126	141	141	145			
12.			30		19	14	40	47	153	154	158	160	161			
13.			40		33	20	53	62	126	126	141	147	147			
14.			30		21	12	41	51	137	137	145	146	147			
15.			6		8	6	14	17	110	113	86	86	86			
So 16.			3		4	4	8	11	71	71	77	77	77			
17.			5		15	9	20	23	69	70	69	72	73			
18.			10		10	6	18	20	73	74	81	81	81			
19.			7		17	9	22	23	76	76	83	83	83			
20.			14		22	13	28	32	64	65	70	70	73			
21.			17		43	11	26	27	86	86	94	94	97			
22.			16		36	13	26	30	91	91	105	105	106			
So 23.			12		11	11	21	25	87	88	103	104	105			
24.			11		33	7	23	25	88	88	95	95	96			
25.			5		24	8	30	37	74	76	65	66	66			
26.			13		41	11	25	27	72	72	84	84	85			
27.			21		39	13	35	35	94	94	105	106	107			
28.			18		20	15	29	35	102	102	117	117	119			
29.			18		18	15	31	35	105	106	114	114	116			
So 30.			16		11	11	28	29	114	115	123	123	123			
31.			19		19	12	33	34	130	131	141	144	145			

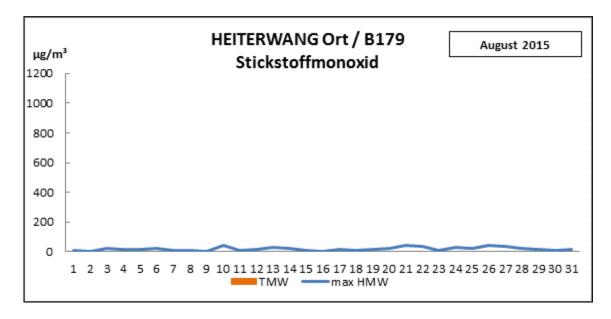
	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	mg/m³
Anz. Messtage		29		31	31	31	
Verfügbarkeit		97%		98%	98%	98%	
Max.HMW				43	69	161	
Max.01-M					53	158	
Max.3-MW					40		
Max.08-M							
Max.8-MW						154	
Max.TMW		40		7	20	98	
97,5% Perz.							
MMW		16		4	11	65	
Gl.JMW					16		

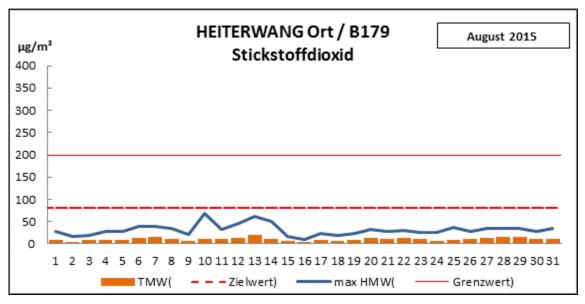

Messstelle: HEITERWANG Ort / B179

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		0		0		
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation				n.a.		
Ozongesetz						
Alarmschwelle					0	
Informationsschwelle					0	
langfristiger Zielwert menschliche Gesundheit					11	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VD	I Richtlini	e)				
ÖAW 7: 1				n a		

(ÖAW = Österreichische Akademie der Wissenschaften, VDI Richtlinie)										
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				n.a.						
ÖAW: Richtwerte Mensch				0	17					
ÖAW: Richtwerte Vegetation				n.a.	n.a.					
ÖAW: SO2-Kriterium für Siedlungsgebiete										
VDI-RL 2310: NO-Grenzwert			0							


Ü1) Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)


¹⁾ An den Stationen Innsbruck/Andechsstraße, Innsbruck/Fallmerayerstraße, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.



Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Zeitraum: AUGUST 2015 Messstelle: IMST / A12

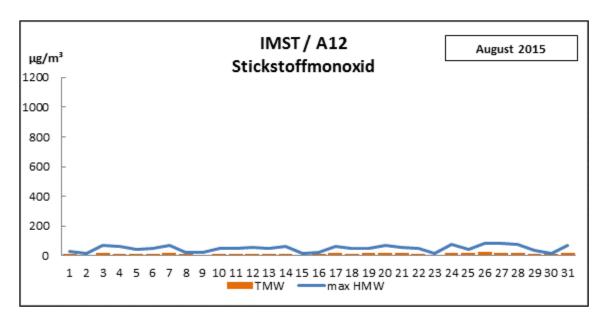
	SC)2	PM10	PM10	NO		NO2		03			СО				
			kont.	grav.												
	μg	/m³	μg/m³	μg/m³	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$,			mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.			15		30	28	43	45								
So 02.			7		14	15	28	29								
03.			11		70	21	30	33								
04.			14		62	23	39	40								
05.			12		44	21	33	34								
06.			18		53	26	40	42								
07.			21		73	34	52	58								
08.			14		22	22	34	34								
So 09.			12		22	17	31	32								
10.			15		52	21	46	49								
11.			22		47	23	37	42								
12.			25		59	29	54	54								
13.			26		48	36	62	63								
14.			27		62	37	67	70								
15.			9		17	14	27	29								
So 16.			5		26	17	31	36								
17.			7		62	23	45	49								
18.			9		52	19	37	43								
19.			8		49	27	51	53								
20.			13		70	26	45	47								
21.			10		54	24	35	39								
22.			11		49	19	31	36								
So 23.			11		18	18	31	36								
24.			13		74	30	49	54								
25.			6		46	23	48	50								
26.			11		84	22	38	40								
27.			17		82	30	48	50								
28.			19		78	38	66	70								
29.			19		37	30	51	54								
So 30.			15		19	32	61	69								
31.			18		70	37	59	64								

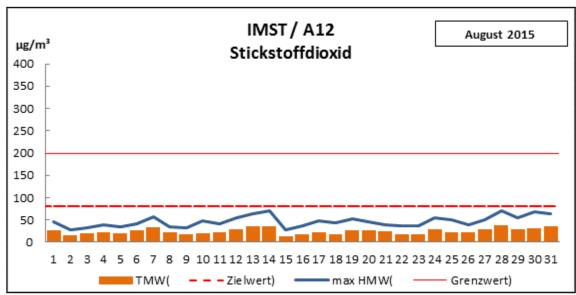
	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	μg/m³	μg/m³	gr av. μg/m³	μg/m³	μg/m³	μg/m³	mg/m³
Anz. Messtage		31		31	31		
Verfügbarkeit		100%		98%	98%		
Max.HMW				84	70		
Max.01-M					67		
Max.3-MW					63		
Max.08-M							
Max.8-MW							
Max.TMW		27		25	38		
97,5% Perz.							
MMW		14		15	25		
Gl.JMW					35		

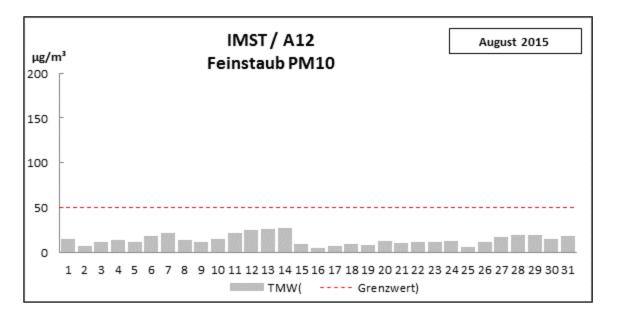
0

Zeitraum: **AUGUST 2015** Messstelle: IMST / A12

Anzahl der Tage mit Grenzwertüberschreitungen


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		0		0		
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation				n.a.		
Ozongesetz						
Alarmschwelle						
Informationsschwelle						
langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				n.a.		
ÖAW: Richtwerte Mensch				Ü1		
ÖAW: Richtwerte Vegetation			·	n.a.		
ÖAW: SO2-Kriterium für Siedlungsgebiete						


VDI-RL 2310: NO-Grenzwert


 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Innsbruck/Andechsstraße, Innsbruck/Fallmerayerstraße, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Messstelle: INNSBRUCK / Andechsstraße

	SC)2	PM10	PM10	NO		NO2				03				co	
			kont.	grav.												
	μg/	/m³	μg/m³	$\mu g/m^3$	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.				14	21	24	36	38	74	74	87	87	87			
So 02.				7	5	11	20	23	77	77	82	83	84			
03.				12	50	20	35	38	80	80	90	92	92			
04.				14	31	21	35	36	111	111	115	115	117			
05.				12	35	20	36	39	100	100	117	122	124			
06.				20	56	28	48	55	115	115	119	119	120			
07.				22	18	23	42	43	112	112	138	146	150			
08.				18	11	20	32	35	98	99	108	108	110			
So 09.				13	5	10	17	18	118	119	127	127	129			
10.				16	15	19	34	35	108	109	117	117	118			
11.				24	29	25	50	55	130	130	136	136	137			
12.				24	34	26	55	61	133	133	145	145	146			
13.				24	20	24	50	57	141	141	165	165	169			
14.				23	9	22	53	60	153	152	170	170	171			
15.				9	6	13	23	30	112	113	106	106	110			
So 16.				4	10	12	27	33	50	50	64	64	65			
17.				7	18	22	41	43	40	40	49	52	53			
18.				10	16	17	31	37	64	64	78	78	82			
19.				12	34	32	57	59	40	41	53	53	56			
20.				12	47	23	33	36	50	50	58	58	60			
21.				9	50	19	33	35	73	73	80	84	86			
22.				11	31	18	32	36	95	95	106	108	108			
So 23.				10	7	10	26	28	105	105	107	107	107			
24.				7	7	6	11	13	103	103	105	105	105			
25.				6	24	17	41	42	82	82	76	77	77			
26.				11	56	22	44	47	58	59	74	74	76			
27.				18	63	35	76	80	90	91	111	112	112			
28.				19	27	30	52	54	109	109	124	126	126			
29.				19	18	28	55	57	111	111	121	121	122			
So 30.				16	9	22	70	73	115	115	131	131	132			
31.				17	16	28	53	54	134	134	143	143	143			

	SO2	PM10	PM10	NO	NO2	03	СО
		kont.	grav.				
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	μg/m³	μg/m³	$\mu g/m^3$	mg/m³
Anz. Messtage			31	31	31	31	
Verfügbarkeit			100%	98%	98%	98%	
Max.HMW				63	80	171	
Max.01-M					76	170	
Max.3-MW					75		
Max.08-M							
Max.8-MW						152	
Max.TMW			24	13	35	113	
97,5% Perz.							
MMW			14	6	21	61	
Gl.JMW					34		

n.a.

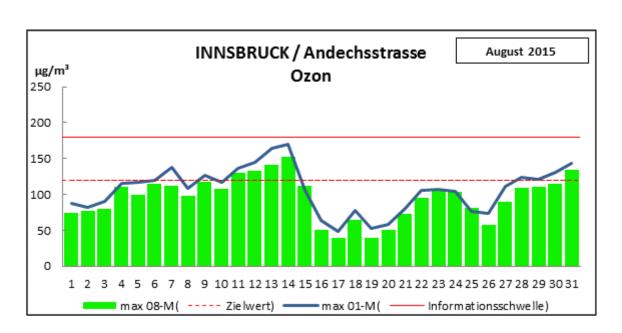
0

n.a.

Zeitraum: AUGUST 2015

Messstelle: INNSBRUCK / Andechsstraße

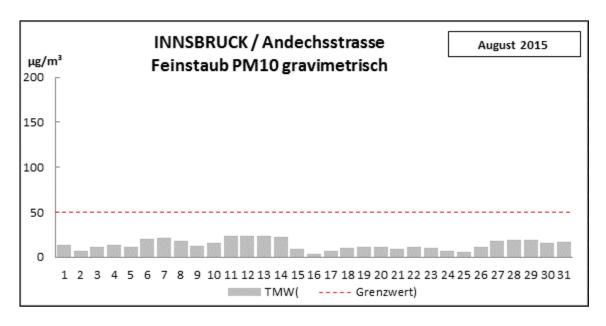
Anzahl der Tage mit Grenzwertüberschreitungen

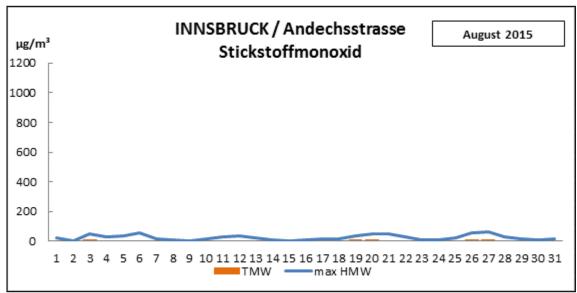

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		0		0		
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation				n.a.		
Ozongesetz						
Alarmschwelle					0	
Informationsschwelle					0	
langfristiger Zielwert menschliche Gesundheit					5	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI I						
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				n.a.		
ÖAW: Richtwerte Mensch				Ü1	17	

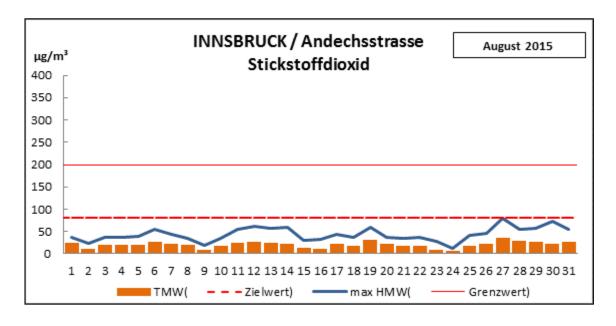
ÖAW: Richtwerte Vegetation

ÖAW: SO2-Kriterium für Siedlungsgebiete

VDI-RL 2310: NO-Grenzwert


¹⁾ An den Stationen Innsbruck/Andechsstraße, Innsbruck/Fallmerayerstraße, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.




 $[\]ddot{\text{U}}\text{1})$ Überschreitung des NO2-Grenzwertes gemäß $\ddot{\text{O}}\text{AW}$ nur für den JMW (gleitend)

Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

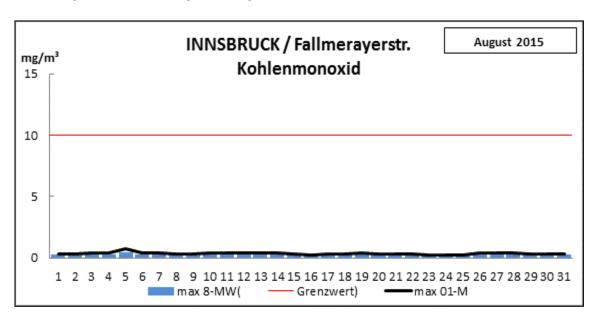
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

 $Messstelle: \quad INNSBRUCK \, / \, Fallmera yerstra \\ {\it Be}$

	SC)2	PM10	PM2.5	NO		NO2		03					СО		
			grav.	grav.												
	μg	/m³	$\mu g/m^3$	μg/m³	μg/m³		μg/m³	ı		ı	$\mu g/m^3$	1			mg/m³	ı
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.	1	2	15	10	30	31	49	52						0.3	0.3	0.4
So 02.	1	2	8	6	14	14	38	40						0.2	0.3	0.4
03.	1	2	13	8	69	26	57	63						0.3	0.4	0.4
04.	1	2	15	10	44	29	45	50						0.3	0.4	0.4
05.	1	2	15	9	49	33	52	58						0.4	0.7	1.0
06.	1	7	21	14	38	36	75	75						0.3	0.4	0.5
07.	1	2	23	16	49	35	61	65						0.3	0.4	0.5
08.	1	2	18	13	19	24	36	39						0.3	0.3	0.3
So 09.	1	2	13	10	11	14	20	24						0.2	0.3	0.3
10.	1	3	18	12	55	26	50	59						0.3	0.4	0.5
11.	2	2	25	17	42	35	57	60						0.3	0.4	0.5
12.	2	3	26	18	51	39	70	87						0.3	0.4	0.5
13.	2	3	25	17	44	39	64	69						0.3	0.4	0.4
14.	2	3	24	16	28	33	67	69						0.3	0.4	0.5
15.	2	2	11	7	21	23	40	44						0.3	0.3	0.3
So 16.	2	2	4	3	17	15	32	34						0.2	0.2	0.2
17.	2	2	7	5	48	30	55	59						0.3	0.3	0.4
18.	2	2	10	6	57	24	44	61						0.3	0.3	0.4
19.	2	3	12	8	53	39	66	70						0.3	0.4	0.4
20.	1	2	13	8	64	30	47	53						0.3	0.3	0.3
21.	1	2	11	6	49	29	51	51						0.3	0.3	0.4
22.	1	2	12	7	26	24	49	57						0.2	0.3	0.3
So 23.	1	2	11	8	12	12	24	24						0.2	0.2	0.3
24.	1	2	7	4	17	12	23	26						0.2	0.2	0.3
25.	1	2	7	4	39	24	54	61						0.2	0.2	0.3
26.	1	2	12	6	68	30	57	61						0.3	0.4	0.5
27.	2	2	17	10	68	38	87	87						0.3	0.4	0.5
28.	1	2	20	13	35	38	63	72						0.3	0.4	0.6
29.	2	3	20	15	23	34	58	60						0.3	0.3	0.4
So 30.	1	3	15	12	9	21	54	55						0.3	0.3	0.3
31.	2	3	17	12	29	31	56	59						0.3	0.3	0.4

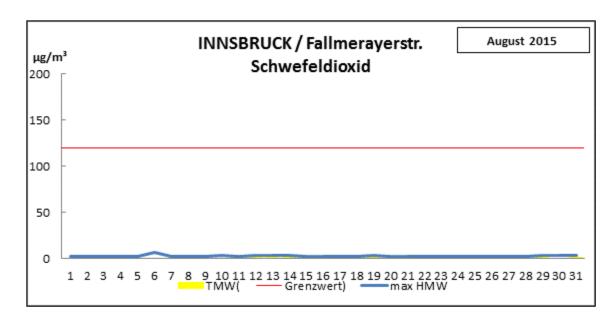
	SO2	PM10	PM2.5	NO	NO2	03	СО
		grav.	grav.				
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	μg/m³	μg/m³	μg/m³	mg/m³
Anz. Messtage	31	31	31	31	31		31
Verfügbarkeit	97%	100%	100%	98%	98%		98%
Max.HMW	7			69	87		
Max.01-M					87		0.7
Max.3-MW	3				69		
Max.08-M							
Max.8-MW							0.4
Max.TMW	2	26	18	20	39		0.3
97,5% Perz.	2		-				
MMW	1	15	10	11	28		0.2
Gl.JMW					39		

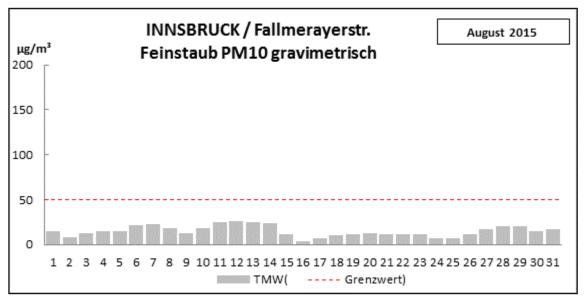
Messstelle: INNSBRUCK / Fallmerayerstraße

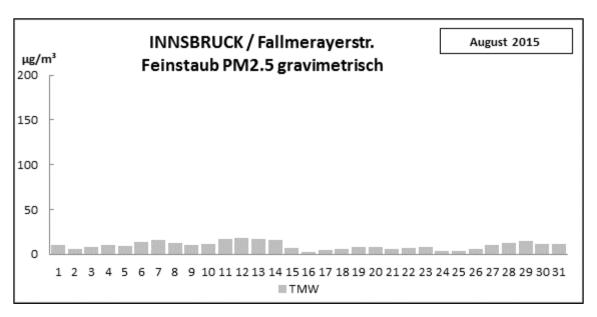

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte	0			0		
Grenzwerte menschliche Gesundheit	0	0		0		0
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation	0			n.a.		

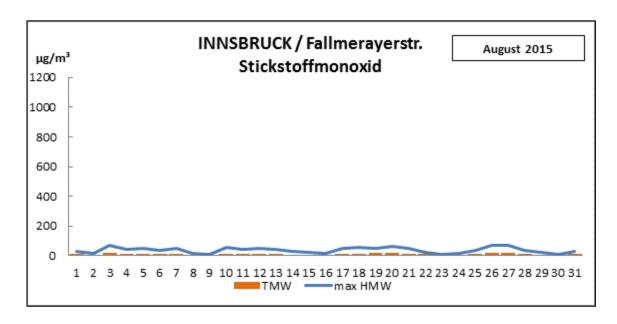
Ozongesetz												
Alarmschwelle												
Informationsschwelle												
langfristiger Zielwert menschliche Gesundheit												
2. VO gegen forstschädliche Luftverunreinigungen	0											

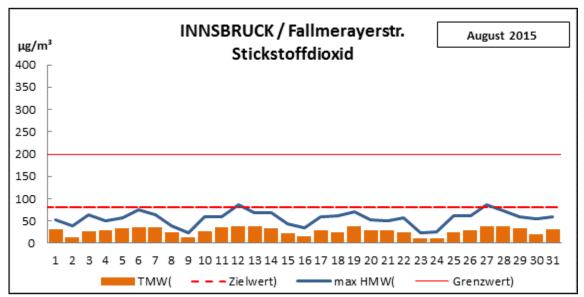
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI Richtlinie)													
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				n.a.									
ÖAW: Richtwerte Mensch				Ü1									
ÖAW: Richtwerte Vegetation				n.a.		0							
ÖAW: SO2-Kriterium für Siedlungsgebiete	0												
VDI-RL 2310: NO-Grenzwert			0										


Ü1) Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)


¹⁾ An den Stationen Innsbruck/Andechsstraße, Innsbruck/Fallmerayerstraße, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.




Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

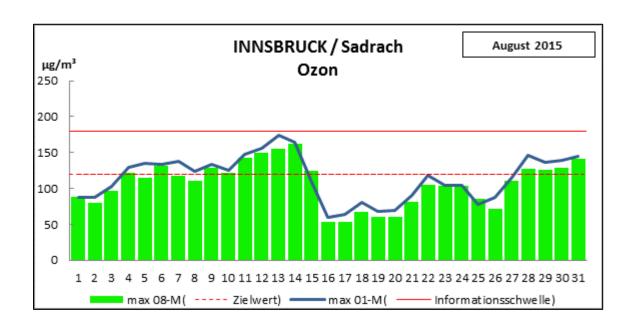

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Messstelle: INNSBRUCK / Sadrach

	SC)2	PM10	PM10	NO		NO2				О3				СО	
			kont.	grav.												
	μg	/m³	μg/m³	μg/m³	$\mu g/m^3$		μg/m³			1	$\mu g/m^3$	1			mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.					6	13	21	23	88	90	88	90	93			
So 02.					1	6	12	13	80	80	87	87	89			
03.					20	8	12	15	96	96	103	103	104			
04.					7	7	16	19	122	123	129	133	134			
05.					5	8	16	18	115	115	135	135	137			
06.					5	8	15	16	131	132	134	135	136			
07.					12	10	29	34	118	118	138	145	149			
08.					2	6	12	13	111	111	124	124	127			
So 09.					3	4	6	7	129	129	134	134	135			
10.					4	8	16	18	122	122	125	125	126			
11.					10	10	29	29	143	143	147	148	149			
12.					10	9	32	36	150	150	156	157	158			
13.					5	9	23	27	155	155	174	174	175			
14.					6	10	41	41	162	162	164	171	172			
15.					2	6	14	15	125	127	108	110	112			
So 16.					3	4	6	7	54	54	60	61	61			
17.					6	12	24	25	54	54	64	64	66			
18.					5	10	22	22	68	68	80	80	81			
19.					3	11	29	30	61	61	68	70	71			
20.					13	10	16	17	61	61	70	70	72			
21.					12	8	15	15	81	81	90	90	92			
22.					26	8	15	17	105	105	118	118	118			
So 23.					4	6	14	15	103	103	104	104	105			
24.					1	3	6	7	103	103	105	105	105			
25.					5	11	24	31	85	86	78	78	79			
26.					25	12	18	20	72	72	87	87	88			
27.					29	11	26	27	111	111	116	117	118			
28.					11	11	19	27	128	128	146	147	148			
29.					3	10	16	17	126	126	137	139	140			
So 30.					2	7	13	13	129	129	139	139	139			
31.					7	9	25	29	142	142	145	145	145			

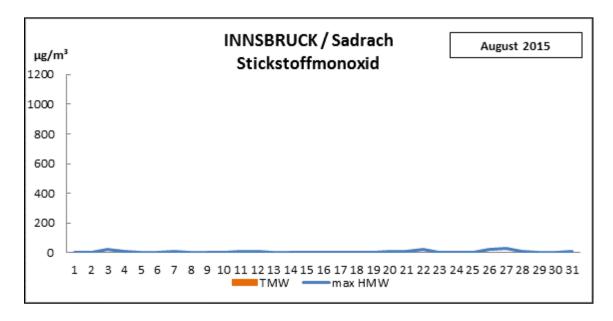
	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	μg/m³	μg/m³	μg/m³	μg/m³	mg/m³
Anz. Messtage				31	31	31	
Verfügbarkeit				98%	98%	98%	
Max.HMW				29	41	175	
Max.01-M					41	174	
Max.3-MW					31		
Max.08-M							
Max.8-MW						162	
Max.TMW				4	13	125	
97,5% Perz.							
MMW				1	9	76	
Gl.JMW					20		

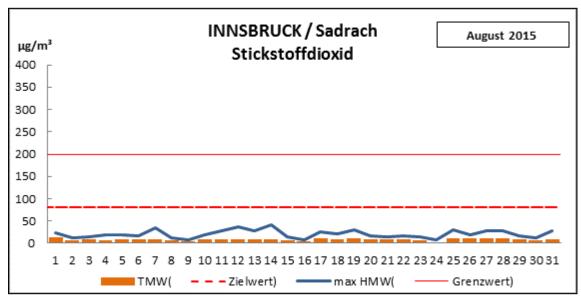
Messstelle: INNSBRUCK / Sadrach


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit				0		
Zielwerte menschliche Gesundheit				0		
Zielwerte Ökosysteme, Vegetation				n.a.		

Ozongesetz				
Alarmschwelle			0	
Informationsschwelle			0	
langfristiger Zielwert menschliche Gesundheit			13	
2. VO gegen forstschädliche Luftverunreinigungen				

Wirkungsbezogene Grenzwerte ÖAW = Österreichische Akademie der Wissenschaften, VDI Richtlinie)										
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				n.a.						
ÖAW: Richtwerte Mensch				0	20					
ÖAW: Richtwerte Vegetation				n.a.	n.a.					
ÖAW: SO2-Kriterium für Siedlungsgebiete										
VDI-RL 2310: NO-Grenzwert			0							


 $[\]ddot{\text{U}}\text{1})$ Überschreitung des NO2-Grenzwertes gemäß $\ddot{\text{O}}\text{AW}$ nur für den JMW (gleitend)

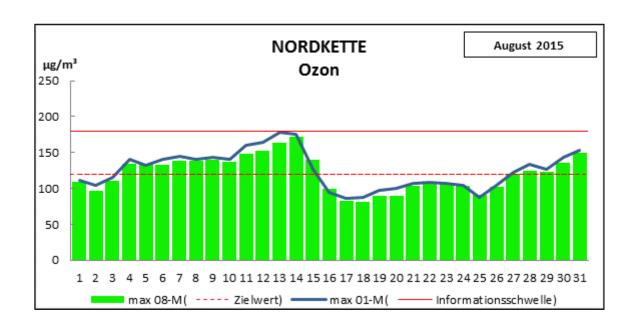

¹⁾ An den Stationen Innsbruck/Andechsstraße, Innsbruck/Fallmerayerstraße, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

 $n.a.)\ Nicht \ ausgewertet,\ da\ der\ Zielwert\ nur\ für\ Vegetationsmessstellen\ gilt.$

Zeitraum: AUGUST 2015 Messstelle: NORDKETTE

	SC)2	PM10	PM10	NO		NO2		О3					СО		
			kont.	grav.												
	μg	m³	μg/m³	μg/m³	μg/m³		$\mu g/m^3$				$\mu g/m^{3}$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.									109	109	111	111	111			
So 02.									97	97	105	105	106			
03.									110	110	115	115	115			
04.									135	135	141	143	145			
05.									134	135	132	132	132			
06.									133	133	140	140	142			
07.									139	139	145	145	147			
08.									139	139	141	142	142			
So 09.									140	140	143	146	148			
10.									137	138	141	141	141			
11.									148	148	160	160	162			
12.									153	153	164	164	165			
13.									163	163	178	179	179			
14.									172	172	176	177	177			
15.									140	140	127	128	128			
So 16.									100	100	94	94	107			
17.									83	83	86	87	88			
18.									81	81	88	89	89			
19.									89	88	97	97	98			
20.									90	90	100	100	102			
21.									104	105	107	108	108			
22.									107	107	108	110	111			
So 23.									106	106	107	107	107			
24.									103	103	105	105	105			
25.									91	92	88	90	89			
26.									102	102	105	105	105			
27.									120	120	123	123	123			
28.									124	124	133	135	137			
29.									123	123	127	127	128			
So 30.									136	136	143	143	144			
31.									150	150	153	153	153			


	SO2	PM10 kont.	PM10	NO	NO2	03	СО
	$\mu g/m^3$	μg/m³	grav. μg/m³	μg/m³	μg/m³	$\mu g/m^3$	mg/m³
Anz. Messtage						31	
Verfügbarkeit						98%	
Max.HMW						179	
Max.01-M						178	
Max.3-MW							
Max.08-M							
Max.8-MW						172	
Max.TMW						153	
97,5% Perz.							
MMW						111	
Gl.JMW							

Zeitraum: AUGUST 2015 Messstelle: NORDKETTE

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte						
Grenzwerte menschliche Gesundheit						
Zielwerte menschliche Gesundheit						
Zielwerte Ökosysteme, Vegetation						
Ozongesetz						
Alarmschwelle					0	
Informationsschwelle					0	
langfristiger Zielwert menschliche Gesundheit					16	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI	Richtlini	e)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme						
ÖAW: Richtwerte Mensch					24	
ÖAW: Richtwerte Vegetation					31	
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert						

Ü1) Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

¹⁾ An den Stationen Innsbruck/Andechsstraße, Innsbruck/Fallmerayerstraße, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Messstelle: MUTTERS / Gärberbach - A13

	SC)2	PM10	PM10	NO		NO2				03				со	
			kont.	grav.												
	μg	m³	μg/m³	μg/m³	μg/m³		μg/m³			ı	$\mu g/m^3$	1	ı		mg/m³	ı
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.			19		119	44	73	76								
So 02.			10		84	43	96	102								
03.			14		138	39	114	116								
04.			15		118	42	103	108								
05.			15		149	45	132	140								
06.			23		114	54	126	139								
07.			21		87	36	77	94								
08.			16		97	40	71	94								
So 09.			14		61	37	98	102								
10.			22		114	48	117	117								
11.			28		95	56	124	133								
12.			27		124	55	154	170								
13.			27		59	47	93	101								
14.			26		89	51	118	124								
15.			15		98	42	74	77								
So 16.			7		69	30	52	63								
17.			11		119	46	85	86								
18.			12		97	38	80	85								
19.			15		79	43	72	76								
20.			11		111	31	59	74								
21.			11		107	36	64	79								
22.			14		143	44	112	115								
So 23.			13		52	25	45	54								
24.			10		38	19	42	44								
25.			11		136	46	79	86								
26.			13		132	33	103	107								
27.			15		112	38	65	76								
28.			20		109	56	134	142								
29.			20		100	57	113	116								
So 30.			14		131	54	148	149								
31.			16		86	45	83	94								

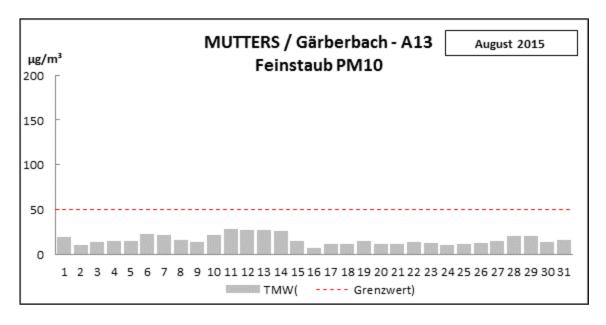
	SO2	PM10	PM10	NO	NO2	03	СО
		kont.	grav.				
	$\mu g/m^3$	mg/m³					
Anz. Messtage		31		31	31		
Verfügbarkeit		100%		98%	98%		
Max.HMW				149	170		
Max.01-M					154		
Max.3-MW					140		
Max.08-M							
Max.8-MW							
Max.TMW		28		60	57		
97,5% Perz.							
MMW		16		34	43		
Gl.JMW					45		

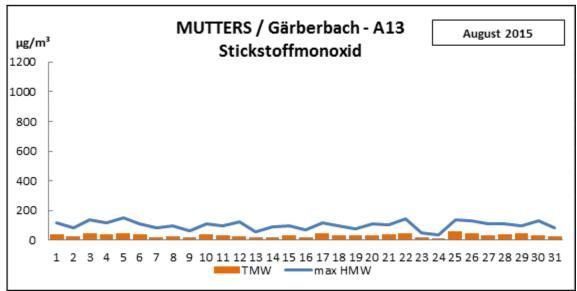
Messstelle: MUTTERS / Gärberbach - A13

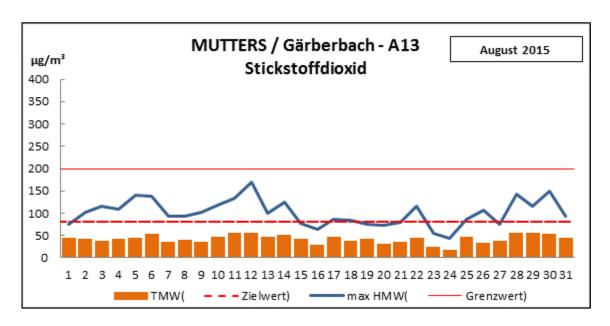
Anzahl der Tage mit Grenzwertüberschreitungen

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		0		0		
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation				n.a.		
Ozongesetz						
Alarmschwelle						
Informationsschwelle						
langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				n.a.		
ÖAW: Richtwerte Mensch				Ü1		
ÖAW: Richtwerte Vegetation				n.a.		

ÖAW: SO2-Kriterium für Siedlungsgebiete


VDI-RL 2310: NO-Grenzwert


0


 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

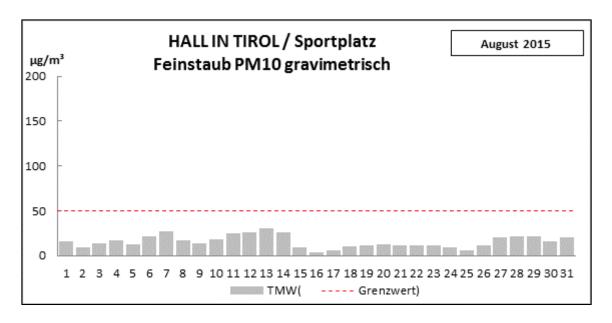
¹⁾ An den Stationen Innsbruck/Andechsstraße, Innsbruck/Fallmerayerstraße, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

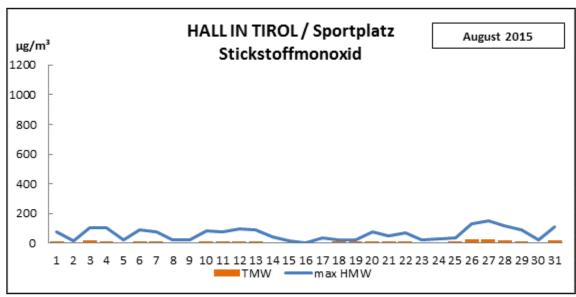
Messstelle: HALL IN TIROL / Sportplatz

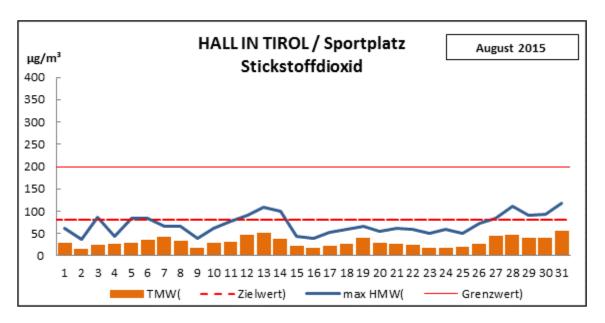
	SC)2	PM10	PM10	NO		NO2				03				co	
			kont.	grav.												
	μg	/m³	μg/m³	μg/m³	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.				16	80	30	49	61								
So 02.				9	17	16	34	36								
03.				14	102	24	73	86								
04.				17	107	26	41	44								
05.				13	22	29	84	84								
06.				21	88	35	75	85								
07.				27	79	42	61	66								
08.				17	21	33	61	67								
So 09.				14	20	19	34	39								
10.				18	84	29	61	62								
11.				25	77	32	71	77								
12.				26	98	46	90	92								
13.				30	91	52	106	108								
14.				26	43	38	97	101								
15.				9	15	22	39	44								
So 16.				4	6	17	37	39								
17.				6	36	23	44	52								
18.				10	25	26	54	59								
19.				11	24	40	65	66								
20.				13	76	30	50	54								
21.				11	53	27	56	61								
22.				11	69	24	58	60								
So 23.				11	26	18	49	51								
24.				9	33	17	57	59								
25.				6	38	21	50	51								
26.				11	134	28	70	74								
27.				20	154	44	78	85								
28.				22	119	47	109	111								
29.				21	89	40	81	92								
So 30.				16	26	40	88	93								
31.				20	111	55	116	119								

	SO2	PM10	PM10	NO	NO2	03	со
		kont.	grav.				
	μg/m³	$\mu g/m^3$	$\mu g/m^3$	μg/m³	μg/m³	μg/m³	mg/m³
Anz. Messtage			31	31	31		
Verfügbarkeit			100%	98%	98%		
Max.HMW				154	119		
Max.01-M					116		
Max.3-MW					100		
Max.08-M							
Max.8-MW							
Max.TMW			30	30	55		
97,5% Perz.							
MMW			16	12	31		
Gl.JMW					38		

Messstelle: HALL IN TIROL / Sportplatz


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		0		0		
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation				n.a.		


Ozongesetz									
Alarmschwelle									
Informationsschwelle									
langfristiger Zielwert menschliche Gesundheit									
2. VO gegen forstschädliche Luftverunreinigungen									


Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI Richtlinie)									
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				n.a.					
ÖAW: Richtwerte Mensch				Ü1					
ÖAW: Richtwerte Vegetation				n.a.					
ÖAW: SO2-Kriterium für Siedlungsgebiete									
VDI-RL 2310: NO-Grenzwert			0						

Ü1) Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Innsbruck/Andechsstraße, Innsbruck/Fallmerayerstraße, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Messstelle: VOMP / Raststätte A12

	SC)2	PM10	PM10	NO		NO2		03			CO				
			kont.	grav.												
	μg/	/m³	μg/m³	$\mu g/m^3$	$\mu g/m^3$		$\mu g/m^3$		$\mu g/m^3$				mg/m³			
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.				15	202	53	70	73								
So 02.				9	111	48	106	120								
03.				12	196	42	93	101								
04.				15	179	48	100	102								
05.				13	121	51	110	112								
06.				20	189	61	117	123								
07.				26	185	61	119	136								
08.				19	121	59	90	94								
So 09.				15	51	45	88	89								
10.				18	152	45	105	111								
11.				24	199	59	105	112								
12.				25	161	65	145	151								
13.				25	202	66	138	153								
14.				25	183	79	122	152								
15.				11	70	42	81	85								
So 16.				4	60	30	57	61								
17.				8	120	44	71	86								
18.				11	140	47	105	111								
19.				13	146	62	103	103								
20.				13	210	47	93	93								
21.				10	151	50	98	107								
22.				11	211	41	65	85								
So 23.				10	49	40	64	66								
24.				11	193	51	86	89								
25.				7	106	46	73	76								
26.				11	270	47	100	115								
27.				16	261	62	109	115								
28.				20	245	67	112	119								
29.				20	199	64	97	102								
So 30.				17	80	63	115	131								
31.				19	151	67	153	153								

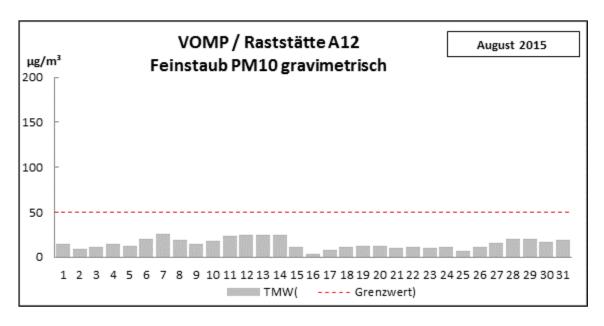
	SO2	PM10 kont.	PM10 grav.	NO	NO2	О3	СО
	$\mu g/m^3$	$\mu g/m^3$	μg/m³	μg/m³	μg/m³	$\mu g/m^3$	mg/m³
Anz. Messtage			31	31	31		
Verfügbarkeit			100%	98%	98%		
Max.HMW				270	153		
Max.01-M					153		
Max.3-MW					132		
Max.08-M							
Max.8-MW							
Max.TMW			26	72	79		
97,5% Perz.		, in the second			-		
MMW			15	43	53		
Gl.JMW					58		

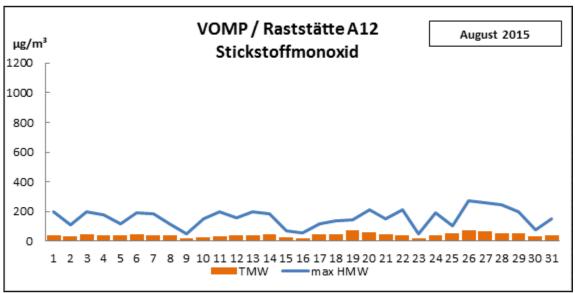
Messstelle: VOMP / Raststätte A12

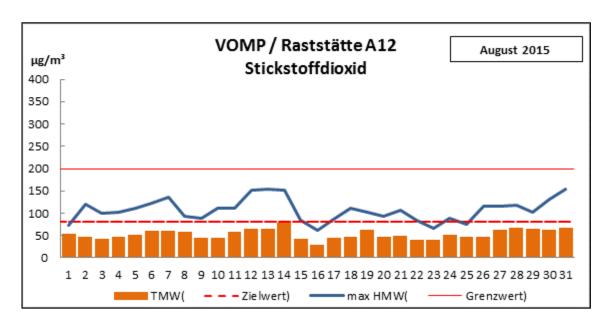
Anzahl der Tage mit Grenzwertüberschreitungen

Beurteilungsgrundlage SO2 PM10 1) NO NO2 O3 CO											
SO2	PM10 1)	NO	NO2	03	CO						
			0								
	0		0								
	0		0								
			n.a.								
cichtlini	ie)										
			n.a.								
			Ü1								
			n.a.								
		0 0 1	0	0 0 0 0 n.a. Cichtlinie) n.a. Ü1 n.a.	0 0 0 n.a Cichtlinie) n.a Ü1 n.a						

Ü1) Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)


VDI-RL 2310: NO-Grenzwert


0


Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

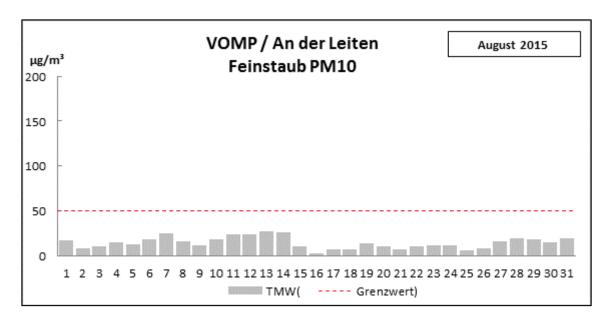
¹⁾ An den Stationen Innsbruck/Andechsstraße, Innsbruck/Fallmerayerstraße, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

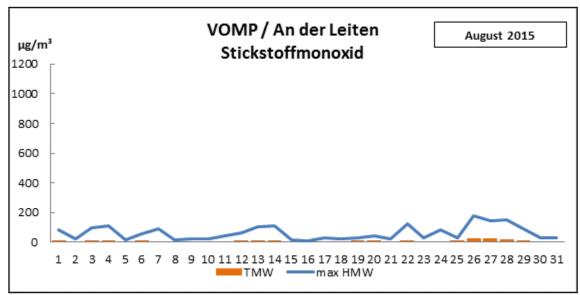
Messstelle: VOMP / An der Leiten

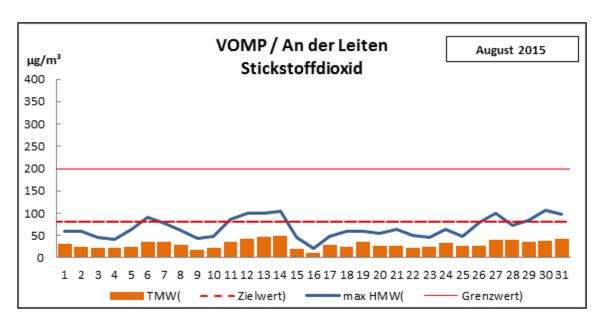
	SC)2	PM10	PM10	NO		NO2		03			СО				
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	μg/m³	$\mu \text{g/m}^{\text{3}}$		$\mu g/m^3$		$\mu g/m^3$				mg/m³			
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.			17		87	32	58	60								
So 02.			8		25	24	52	60								
03.			10		97	23	46	47								
04.			15		108	23	38	42								
05.			13		16	25	59	65								
06.			18		58	36	91	91								
07.			25		88	35	58	78								
08.			16		18	29	49	62								
So 09.			12		21	18	42	43								
10.			18		23	23	44	49								
11.			24		44	35	78	86								
12.			24		61	43	91	101								
13.			27		101	46	96	100								
14.			26		113	49	102	105								
15.			10		16	21	45	46								
So 16.			3		7	12	21	22								
17.			7		27	29	46	49								
18.			7		21	24	57	60								
19.			14		27	37	58	59								
20.			10		44	27	53	54								
21.			7		21	26	55	63								
22.			10		126	23	44	50								
So 23.			11		30	24	41	45								
24.			11		85	34	61	65								
25.			6		28	28	47	49								
26.			8		181	28	74	80								
27.			16		145	40	95	100								
28.			19		149	41	70	72								
29.			18		91	37	77	85								
So 30.			15		32	39	96	107								
31.			19		33	43	87	97								

	SO2	PM10	PM10	NO	NO2	03	CO
		kont.	grav.				
	$\mu g/m^3$	μg/m³	mg/m³				
Anz. Messtage		31		31	31		
Verfügbarkeit		99%		98%	98%		
Max.HMW				181	107		
Max.01-M					102		
Max.3-MW					92		
Max.08-M							
Max.8-MW							
Max.TMW		27		25	49		
97,5% Perz.							
MMW		14		10	31		
Gl.JMW					36		

Messstelle: VOMP / An der Leiten


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		0		0		
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation			•	n.a.		


Ozongesetz												
Alarmschwelle												
Informationsschwelle												
langfristiger Zielwert menschliche Gesundheit												
2. VO gegen forstschädliche Luftverunreinigungen												


Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI Richtlinie)												
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				n.a.								
ÖAW: Richtwerte Mensch				Ü1								
ÖAW: Richtwerte Vegetation				n.a.								
ÖAW: SO2-Kriterium für Siedlungsgebiete												
VDI-RL 2310: NO-Grenzwert			0									

Ü1) Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

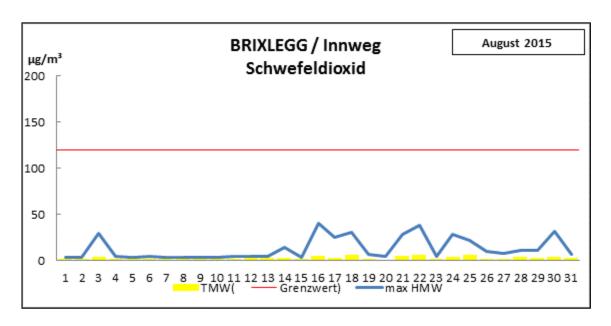
¹⁾ An den Stationen Innsbruck/Andechsstraße, Innsbruck/Fallmerayerstraße, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

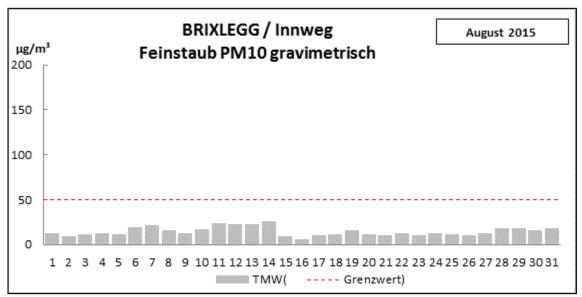
Zeitraum: AUGUST 2015 Messstelle: BRIXLEGG / Innweg

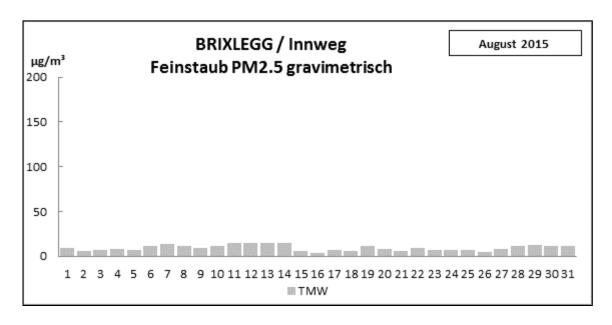
	SO)2	PM10	PM2.5	NO		NO2		03			СО				
			grav.	grav.												
	μg	/m³	μg/m³	$\mu g/m^3$	$\mu g/m^3$		$\mu g/m^3$		$\mu g/m^3$					mg/m³		
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.	2	3	13	9												
So 02.	2	3	9	6												
03.	4	29	11	7												
04.	2	4	13	8												
05.	2	3	12	7												
06.	2	4	19	12												
07.	2	3	22	14												
08.	2	3	16	11												
So 09.	2	3	13	9												
10.	2	3	17	11												
11.	2	4	24	15												
12.	3	5	23	15												
13.	3	4	23	15												
14.	3	14	26	15												
15.	2	3	9	6												
So 16.	5	40	6	4												
17.	3	25	10	7												
18.	6	31	11	6												
19.	2	7	16	11												
20.	1	4	11	8												
21.	5	28	10	6												
22.	6	38	13	9												
So 23.	2	4	10	7												
24.	4	28	13	7												
25.	6	22	12	7												
26.	2	10	10	5												
27.	2	8	13	8												
28.	4	11	18	11												
29.	3	11	18	13												
So 30.	4	32	16	11												
31.	3	7	18	11												

	SO2	PM10	PM2.5	NO	NO2	03	СО
		grav.	grav.				
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	μg/m³	$\mu g/m^3$	mg/m³
Anz. Messtage	31	31	31				
Verfügbarkeit	98%	100%	100%				
Max.HMW	40						
Max.01-M							
Max.3-MW	24						
Max.08-M							
Max.8-MW							
Max.TMW	6	26	15				
97,5% Perz.	13						
MMW	3	15	9				
Gl.JMW							

Messstelle: BRIXLEGG / Innweg


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte	0					
Grenzwerte menschliche Gesundheit	0	0				
Zielwerte menschliche Gesundheit		0				
Zielwerte Ökosysteme, Vegetation	0					
Ozongesetz						
Alarmschwelle						
Informationsschwelle						
langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen	0					
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlini	e)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme						
ÖAW: Richtwerte Mensch						
ÖAW: Richtwerte Vegetation						
ÖAW: SO2-Kriterium für Siedlungsgebiete	0					
VDI-RL 2310: NO-Grenzwert						


Ü1) Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)


Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Innsbruck/Andechsstraße, Innsbruck/Fallmerayerstraße, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

 $Mess stelle: \quad KRAMSACH \, / \, Angerberg$

	SC)2	PM10	PM10	NO		NO2				О3				со	
	μg	/ 3	kont.	grav.	/3		/3				$\mu g/m^3$				/ 3	
	μg/		μg/m³	μg/m³	μg/m³		μg/m³	I						mg/m³		
Tag	TMW	max HMW	TMW	TMW	max HMW	TMW	max 01-M	max HMW	max 08-M	max 8-MW	max 01-M	max 1-MW	max HMW	max 8-MW	max 01-M	max HMW
	110100	THVIVV	110100	1101 00			20							G-1V1 VV	01-101	11101 00
01. So 02.					10	10	15	21 16	97 91	97 91	104 79	104 83	104 86			
03.					18	9	15	16	102	102	110	110	111			
04.					10	8	18	20	131	131	141	141	142			
05.					5	8	14	18	119	123	120	121	122			
06.					9	11	20	22	129	129	135	136	138			
07.					8	12	31	31	121	121	142	145	149			
08.					2	8	13	13	114	114	123	125	127			
So 09.					3	7	9	10	128	128	142	142	143			
10.					4	9	20	24	130	130	138	138	139			
11.					17	11	34	38	147	147	154	154	155			
12.					8	11	32	41	141	142	150	151	151			
13.					10	12	31	37	140	140	148	148	150			
14.					21	14	50	54	140	140	157	157	159			
15.					4	7	12	13	124	126	116	116	117			
So 16.					1	5	8	10	71	70	60	61	62			
17.					5	9	16	18	53	55	52	52	52			
18.					11	9	15	18	78	78	85	86	87			
19.					6	15	31	32	68	69	62	62	66			
20.					17	12	24	24	63	63	78	78	79			
21.					7	8	13	14	79	80	88	88	89			
22.					26	8	25	27	103	103	109	109	109			
So 23.					5	8	16	17	103	104	109	110	110			
24.					28	13	42	43	92	92	101	102	102			
25.					3	7	15	17	81	82	81	81	81			
26.					17	10	15	16	77	77	86	86	89			
27.					31	14	29	31	100	100	107	108	108			
28.					51	15	41	43	123	123	128	131	131			
29.					20	12	35	39	126	126	133	133	133			
So 30.					3	10	15	17	123	123	134	137	138			
31.					5	12	24	26	141	141	153	153	153			

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	μg/m³	μg/m³	$\mu g/m^3$	mg/m³
Anz. Messtage				31	31	31	
Verfügbarkeit				98%	98%	98%	
Max.HMW				51	54	159	
Max.01-M					50	157	
Max.3-MW					46		
Max.08-M							
Max.8-MW						147	
Max.TMW				4	15	108	
97,5% Perz.			, in the second			, in the second	
MMW				1	10	74	
Gl.JMW					20		

0

0

30

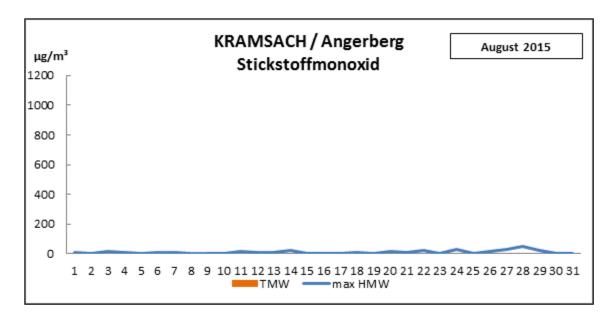
Zeitraum: **AUGUST 2015**

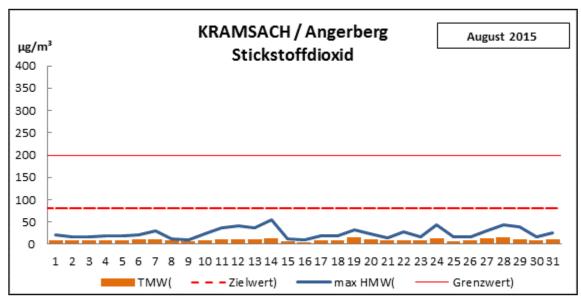
Messstelle: KRAMSACH / Angerberg

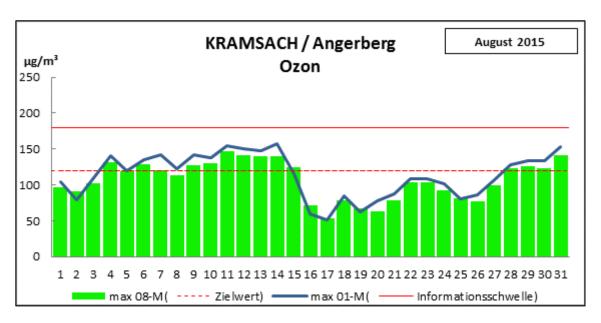
Anzahl der Tage mit Grenzwertüberschreitungen

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO			
IG-Luft									
Warnwerte				0					
Grenzwerte menschliche Gesundheit				0					
Zielwerte menschliche Gesundheit				0					
Zielwerte Ökosysteme, Vegetation				0					
Ozongesetz									
Alarmschwelle					0				
Informationsschwelle					0				
langfristiger Zielwert menschliche Gesundheit					14				
2. VO gegen forstschädliche Luftverunreinigungen									
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI Richtlinie)									
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				Ü1					
ÖAW: Richtwerte Mensch				0	19				

VDI-RL 2310: NO-Grenzwert


ÖAW: Richtwerte Vegetation ÖAW: SO2-Kriterium für Siedlungsgebiete




 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) $\ddot{U}2)$ Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

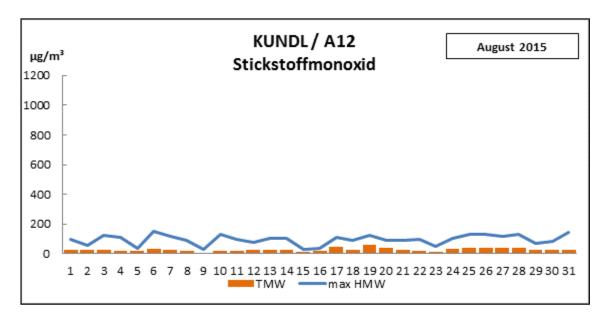
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

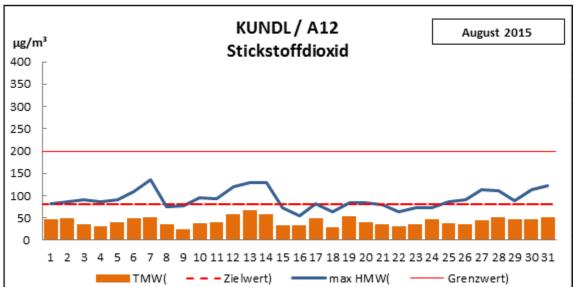
¹⁾ An den Stationen Innsbruck/Andechsstraße, Innsbruck/Fallmerayerstraße, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Zeitraum: AUGUST 2015 Messstelle: KUNDL / A12

	SC)2	PM10	PM10	NO		NO2		03				СО			
			kont.	grav.												
	μg/	m³	μg/m³	μg/m³	μg/m³	g/m³					$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.					95	47	75	81								
So 02.					56	49	76	87								
03.					126	35	90	92								
04.					112	32	87	87								
05.					40	41	87	91								
06.					150	50	104	110								
07.					117	51	132	135								
08.					91	35	71	75								
So 09.					30	25	64	77								
10.					134	38	83	96								
11.					98	40	80	93								
12.					74	59	103	120								
13.					103	67	128	129								
14.					104	59	94	130								
15.					28	34	62	72								
So 16.					39	34	51	54								
17.					110	49	78	82								
18.					94	29	54	63								
19.					122	54	80	84								
20.					93	41	82	84								
21.					92	37	76	79								
22.					100	31	62	64								
So 23.					48	36	66	72								
24.					103	48	71	73								
25.					133	39	80	87								
26.					131	37	88	91								
27.					118	45	110	113								
28.					133	52	108	112								
29.					72	48	84	89								
So 30.					81	47	101	113								
31.					143	51	115	122								

	SO2	PM10	PM10	NO	NO2	03	СО
		kont.	grav.				
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	μg/m³	μg/m³	$\mu g/m^3$	mg/m³
Anz. Messtage				31	31		
Verfügbarkeit				97%	97%		
Max.HMW				150	135		
Max.01-M					132		
Max.3-MW					120		
Max.08-M							
Max.8-MW							
Max.TMW				61	67		
97,5% Perz.							-
MMW				28	43		
Gl.JMW					47		


Zeitraum: **AUGUST 2015** Messstelle: KUNDL / A12


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit				0		
Zielwerte menschliche Gesundheit				0		
Zielwerte Ökosysteme, Vegetation				n.a.		
Ozongesetz						
Alarmschwelle						
Informationsschwelle						
langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI I	Richtlini	e)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				n.a.		
ÖAW: Richtwerte Mensch				Ü1		
ÖAW: Richtwerte Vegetation				n.a.		
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			

Ü1) Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

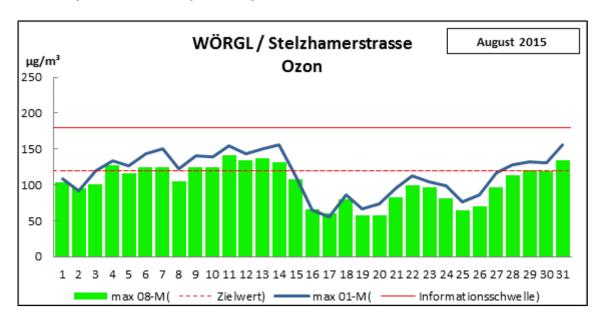
¹⁾ An den Stationen Innsbruck/Andechsstraße, Innsbruck/Fallmerayerstraße, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Messstelle: WÖRGL / Stelzhamerstraße

	SC)2	PM10	PM10	NO		NO2				О3				СО	
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$		$\mu g/m^3$	•		•	$\mu g/m^3$	1			mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.			14		15	16	35	48	104	104	108	108	109			
So 02.					13	12	26	31	95	97	92	92	93			
03.					21	12	21	25	101	101	120	121	121			
04.					60	13	33	35	128	128	134	137	138			
05.					6	13	26	30	116	118	127	128	128			
06.					20	17	30	37	125	126	143	145	146			
07.					16	21	41	50	124	125	150	150	152			
08.					5	14	28	30	105	105	122	122	123			
So 09.					8	9	15	18	124	124	141	141	142			
10.					12	16	30	33	125	125	139	139	140			
11.					14	19	38	43	142	142	155	155	155			
12.					20	21	51	57	135	135	143	143	144			
13.					12	19	44	50	137	137	150	150	151			
14.			26		22	24	49	55	132	132	156	158	159			
15.			10		4	11	20	25	108	109	112	112	112			
So 16.			5		2	8	13	19	66	69	65	66	66			
17.			6		5	15	27	28	60	60	55	57	56			
18.			5		11	11	16	18	80	80	86	86	86			
19.			14		18	19	29	35	57	59	67	68	68			
20.			12		19	16	25	29	57	57	73	73	77			
21.			8		14	12	23	29	83	83	96	96	96			
22.			12		24	13	21	24	100	100	113	114	114			
So 23.			13		6	15	32	34	97	97	105	107	108			
24.			11		31	20	36	38	82	83	99	99	101			
25.			6		10	14	34	34	64	65	77	77	78			
26.			9		50	15	30	32	70	70	86	86	87			
27.			16		58	21	32	39	97	97	117	117	117			
28.			19		37	24	41	41	114	115	128	129	130			
29.			18		11	20	47	50	121	121	132	133	134			
So 30.			16		13	20	44	46	119	120	131	132	134			
31.			17		12	21	42	45	135	135	156	156	158			

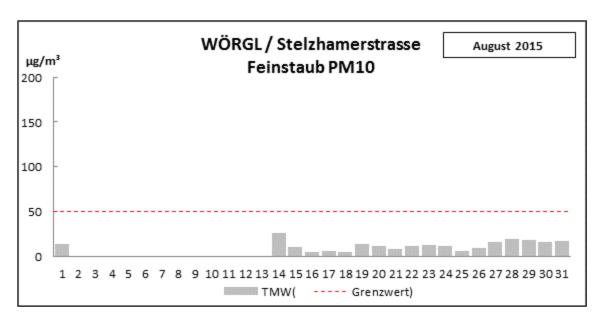
	SO2	PM10	PM10	NO	NO2	03	co
		kont.	grav.				
	μg/m³	$\mu g/m^3$	$\mu g/m^3$	μg/m³	$\mu g/m^3$	μg/m³	mg/m³
Anz. Messtage		19		31	31	31	
Verfügbarkeit		63%		98%	98%	98%	
Max.HMW				60	57	159	
Max.01-M					51	156	
Max.3-MW					42		
Max.08-M							
Max.8-MW						142	
Max.TMW		26		9	24	90	
97,5% Perz.							
MMW				3	16	64	
Gl.JMW					27		

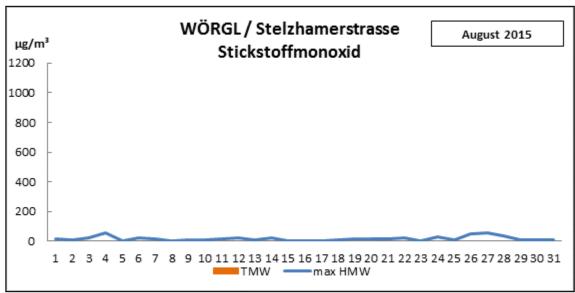
Messstelle: WÖRGL / Stelzhamerstraße

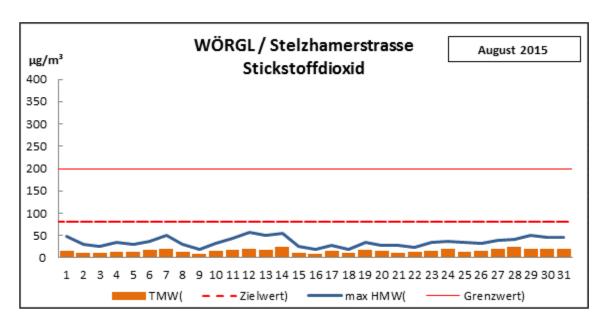

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		0		0		
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation				n.a.		

Ozongesetz				
Alarmschwelle			0	
Informationsschwelle			0	
langfristiger Zielwert menschliche Gesundheit			11	
2. VO gegen forstschädliche Luftverunreinigungen				

Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI Richtlinie)													
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				n.a.									
ÖAW: Richtwerte Mensch				0	18								
ÖAW: Richtwerte Vegetation				n.a.	n.a.								
ÖAW: SO2-Kriterium für Siedlungsgebiete													
VDI-RL 2310: NO-Grenzwert			0										


 $[\]ddot{\text{U}}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)


¹⁾ An den Stationen Innsbruck/Andechsstraße, Innsbruck/Fallmerayerstraße, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.



Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

 $n.a.)\ Nicht \ ausgewertet,\ da\ der\ Zielwert\ nur\ für\ Vegetationsmessstellen\ gilt.$

Messstelle: KUFSTEIN / Praxmarerstraße

	SC)2	PM10	PM10	NO		NO2		03				co			
			kont.	grav.												
	μg/	/m³	μg/m³	μg/m³	μg/m³		$\mu g/m^3$		μg/m³					mg/m³		
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.			12		14	14	24	28								
So 02.			7		7	15	40	43								
03.			9		26	13	18	22								
04.			12		15	14	25	26								
05.			10		15	14	24	26								
06.			17		21	18	30	46								
07.			19		27	19	38	44								
08.			15		7	16	25	27								
So 09.			13		8	12	28	35								
10.			18		40	19	41	45								
11.			25		28	18	41	44								
12.			25		29	20	40	45								
13.			28		22	28	48	54								
14.			22		22	19	45	45								
15.			8		5	8	19	20								
So 16.			3		3	6	9	13								
17.			4		12	11	24	27								
18.			7		15	9	21	23								
19.			9		18	15	27	37								
20.			11		36	15	26	30								
21.			8		54	13	25	26								
22.			11		13	10	18	20								
So 23.			12		8	11	21	22								
24.			10		31	20	38	41								
25.			6		41	17	33	33								
26.			7		38	14	24	28								
27.			12		49	20	30	32								
28.			17		34	22	40	44								
29.			17		20	15	29	29								
So 30.			15		54	14	26	29								
31.			17		88	24	58	62								

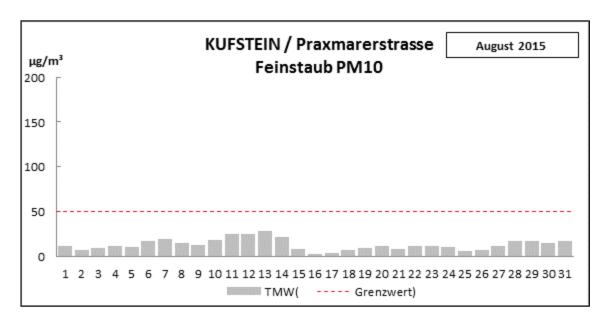
	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	со
	$\mu g/m^3$	μg/m³	μg/m³	μg/m³	μg/m³	$\mu g/m^3$	mg/m³
Anz. Messtage		31		31	31		
Verfügbarkeit		100%		98%	98%		
Max.HMW				88	62		
Max.01-M					58		
Max.3-MW					51		
Max.08-M							
Max.8-MW							
Max.TMW		28		8	28		
97,5% Perz.							
MMW		13		4	16		
Gl.JMW					24		

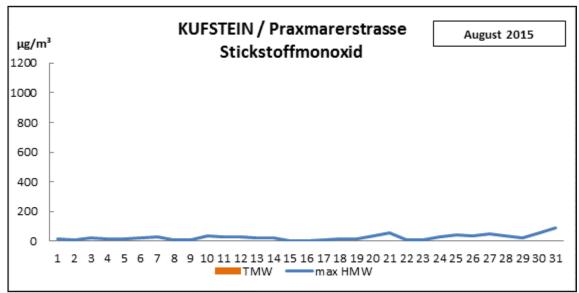
Messstelle: KUFSTEIN / Praxmarerstraße

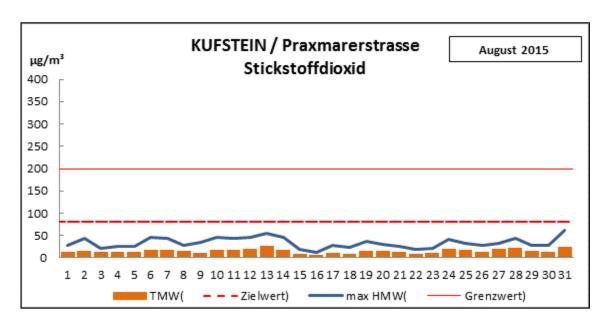
Anzahl der Tage mit Grenzwertüberschreitungen

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	co
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		0		0		
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation				n.a.		
Ozongesetz						
Alarmschwelle						
Informationsschwelle						
langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI	Richtlin	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				n.a.		
ÖAW: Richtwerte Mensch				0		
ÖAW: Richtwerte Vegetation				n.a.		
ÖAW: SO2-Kriterium für Siedlungsgebiete						

Ü1) Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)


VDI-RL 2310: NO-Grenzwert


0

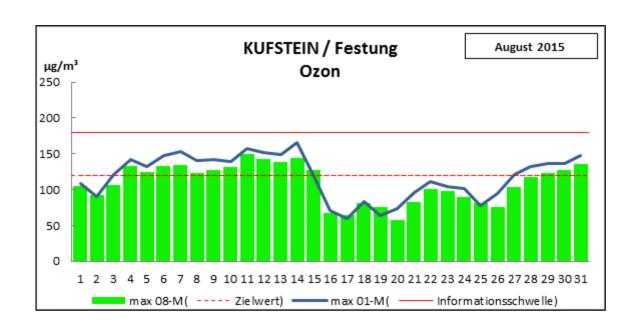

Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Innsbruck/Andechsstraße, Innsbruck/Fallmerayerstraße, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Zeitraum: AUGUST 2015 Messstelle: KUFSTEIN / Festung

	SC)2	PM10	PM10	NO		NO2				03			СО		
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$		$\mu \text{g/m}^{\text{3}}$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.									105	105	108	109	109			
So 02.									92	94	90	91	95			
03.									106	106	121	121	122			
04.									133	133	142	142	142			
05.									125	128	132	132	132			
06.									133	133	147	147	147			
07.									135	135	153	153	157			
08.									123	123	140	140	142			
So 09.									128	128	142	144	144			
10.									132	132	139	139	140			
11.									150	150	158	158	159			
12.									143	143	152	154	154			
13.									139	139	149	151	152			
14.									144	144	166	166	167			
15.									127	128	118	122	121			
So 16.									68	71	71	71	73			
17.									65	66	59	60	61			
18.									81	81	84	84	85			
19.									76	77	64	67	70			
20.									58	58	73	76	77			
21.									83	83	96	96	99			
22.									101	101	111	111	111			
So 23.									98	98	105	105	106			
24.									89	89	102	102	105			
25.									82	83	78	82	79			
26.									76	77	94	94	94			
27.									103	103	121	121	121			
28.									118	118	132	134	136			
29.									123	123	136	136	137			
So 30.									127	127	136	136	137			
31.									136	137	147	147	147			


	SO2	PM10	PM10	NO	NO2	03	со
		kont.	grav.				
	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	mg/m³
Anz. Messtage						31	
Verfügbarkeit						98%	
Max.HMW						167	
Max.01-M						166	
Max.3-MW							
Max.08-M							
Max.8-MW						150	
Max.TMW						105	
97,5% Perz.							
MMW						69	
Gl.JMW							

Zeitraum: AUGUST 2015 Messstelle: KUFSTEIN / Festung

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte						
Grenzwerte menschliche Gesundheit						
Zielwerte menschliche Gesundheit						
Zielwerte Ökosysteme, Vegetation						
Ozongesetz						
Alarmschwelle					0	
Informationsschwelle					0	
langfristiger Zielwert menschliche Gesundheit					15	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme						
ÖAW: Richtwerte Mensch					20	
ÖAW: Richtwerte Vegetation					n.a.	-
ÖAW: SO2-Kriterium für Siedlungsgebiete						-
VDI-RL 2310: NO-Grenzwert						

 $[\]ddot{\text{U}}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

¹⁾ An den Stationen Innsbruck/Andechsstraße, Innsbruck/Fallmerayerstraße, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

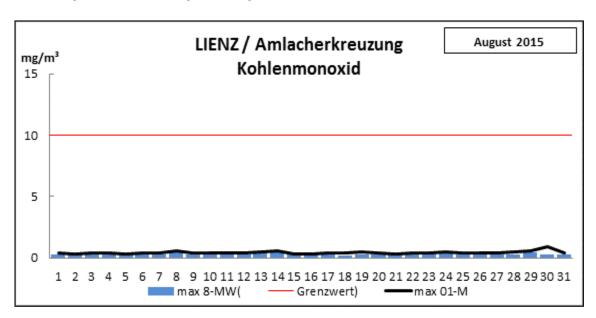
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Messstelle: LIENZ / Amlacherkreuzung

	SC)2	PM10	PM2.5	NO		NO2				03				СО	
			grav.	grav.												
	μg	/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.			13	8	68	24	44	45						0.3	0.4	0.4
So 02.			8	5	49	20	48	50						0.3	0.3	0.4
03.			14	8	162	30	57	59						0.3	0.4	0.5
04.			15	10	101	31	65	68						0.4	0.4	0.6
05.			15	9	105	32	64	70						0.3	0.3	0.4
06.			20	14	116	34	66	77						0.3	0.4	0.5
07.			21	15	100	35	68	73						0.3	0.4	0.4
08.			17	12	65	30	63	73						0.4	0.6	0.8
So 09.			17	11	54	23	46	47						0.3	0.4	0.4
10.			24	16	97	36	72	81						0.3	0.4	0.4
11.			25	17	104	43	84	85						0.4	0.4	0.5
12.			26	18	99	42	89	109						0.3	0.4	0.5
13.			24	17	138	52	91	94						0.4	0.5	0.5
14.			25	18	167	55	112	119						0.5	0.6	0.7
15.			11	8	56	28	48	56						0.3	0.3	0.4
So 16.			9	5	71	27	56	56						0.3	0.3	0.4
17.			9	5	152	34	68	90						0.4	0.4	0.5
18.			8	4	113	21	49	59						0.2	0.4	0.5
19.			10	5	145	27	63	77						0.3	0.5	0.5
20.			8	4	159	29	65	67						0.3	0.4	0.5
21.			8	5	104	23	45	45						0.3	0.3	0.4
22.			9	6	56	22	45	48						0.3	0.4	0.5
So 23.			13	9	50	22	36	40						0.3	0.4	0.4
24.			16	10	167	43	85	87						0.4	0.5	0.6
25.			8	4	116	25	47	50						0.3	0.4	0.4
26.			9	5	139	26	50	52						0.3	0.4	0.7
27.			13	7	102	28	59	70						0.3	0.4	0.5
28.			16	10	86	35	72	79						0.3	0.5	0.5
29.			15	11	58	32	56	67						0.4	0.6	0.9
So 30.			14	9	62	31	63	71						0.3	0.9	1.4
31.			18	12	93	36	78	82						0.3	0.4	0.4

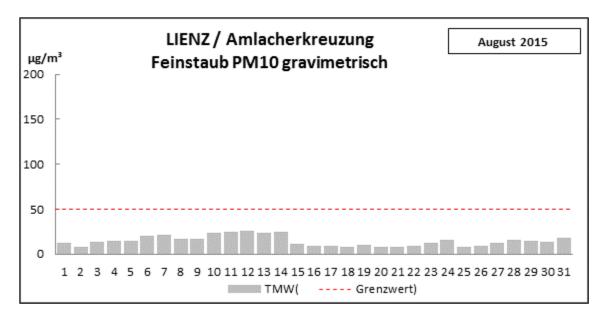
	SO2	PM10	PM2.5	NO	NO2	03	СО
		grav.	grav.				
	$\mu g/m^3$	mg/m³					
Anz. Messtage		31	31	31	31		31
Verfügbarkeit		100%	100%	98%	98%		99%
Max.HMW				167	119		
Max.01-M					112		0.9
Max.3-MW					95		
Max.08-M							
Max.8-MW							0.5
Max.TMW		26	18	62	55		0.3
97,5% Perz.							
MMW		15	10	34	32		0.2
Gl.JMW					37		

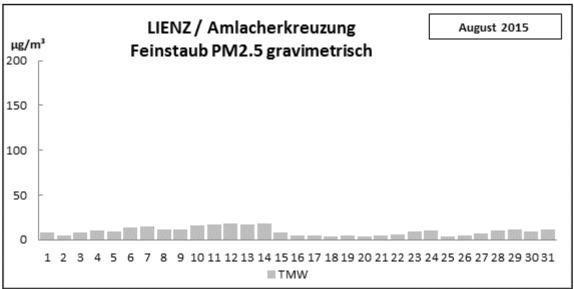
Messstelle: LIENZ / Amlacherkreuzung

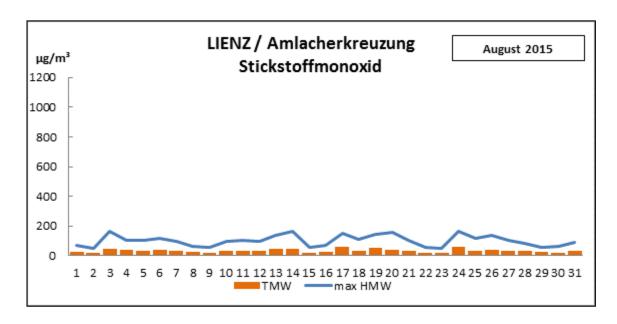

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		0		0		0
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation				n.a.		

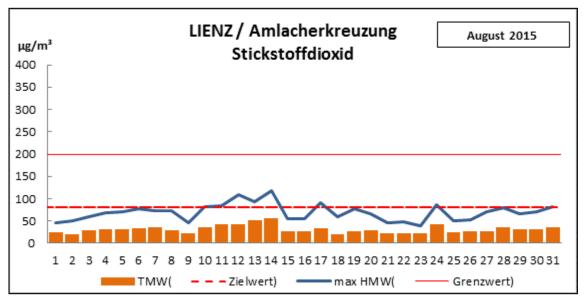
Ozongesetz									
Alarmschwelle									
Informationsschwelle									
langfristiger Zielwert menschliche Gesundheit									
2. VO gegen forstschädliche Luftverunreinigungen									

Wirkungsbezogene Grenzwerte ÖAW = Österreichische Akademie der Wissenschaften, VDI Richtlinie)										
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				n.a.						
ÖAW: Richtwerte Mensch				Ü1						
ÖAW: Richtwerte Vegetation				n.a.		0				
ÖAW: SO2-Kriterium für Siedlungsgebiete										
VDI-RL 2310: NO-Grenzwert			0							


Ü1) Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)


¹⁾ An den Stationen Innsbruck/Andechsstraße, Innsbruck/Fallmerayerstraße, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.




Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Zeitraum: AUGUST 2015 Messstelle: LIENZ / Tiefbrunnen

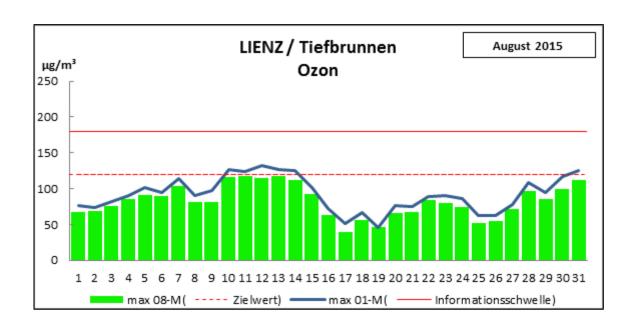
	SC)2	PM10	PM10	NO		NO2				03				СО	
			kont.	grav.												
	μg	/m³	μg/m³	μg/m³	μg/m³		μg/m³	ı	$\mu g/m^3$						mg/m³	1
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.					3	6	9	10	67	67	77	77	77			
So 02.					3	4	9	11	69	69	74	75	75			
03.					7	5	10	10	76	77	82	82	83			
04.					6	4	8	8	86	87	91	91	93			
05.					5	6	15	17	91	91	102	102	103			
06.					6	7	14	15	90	90	95	95	96			
07.					6	6	14	14	103	103	114	115	116			
08.					3	5	9	11	81	81	91	92	95			
So 09.					2	4	9	11	81	81	98	98	99			
10.					3	6	14	15	116	116	127	127	128			
11.					4	7	15	15	117	117	124	124	125			
12.					4	8	18	19	115	115	132	132	133			
13.					4	8	17	17	118	118	126	126	127			
14.					14	8	14	17	112	112	125	130	133			
15.					2	4	7	8	92	96	101	101	104			
So 16.					2	3	7	8	63	63	72	74	75			
17.					5	8	16	17	39	39	52	52	52			
18.					8	4	6	6	56	57	66	67	70			
19.					7	7	16	19	47	49	46	46	49			
20.					6	6	10	12	66	66	77	77	78			
21.					8	5	11	12	67	67	75	75	75			
22.					3	4	7	7	84	85	89	89	89			
So 23.					2	4	6	8	80	81	90	90	90			
24.					7	8	16	17	75	75	86	86	87			
25.					7	6	15	16	52	52	62	62	62			
26.					3	5	12	12	55	55	63	63	64			
27.					7	6	13	14	71	71	78	78	78			
28.					5	8	15	16	97	97	109	109	110			
29.					3	7	14	15	85	85	95	95	96			
So 30.					2	6	16	18	99	100	117	118	119			
31.					5	8	17	19	112	113	125	125	126			

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	μg/m³	μg/m³	μg/m³	$\mu g/m^3$	mg/m³
Anz. Messtage				31	31	31	
Verfügbarkeit				98%	98%	98%	
Max.HMW				14	19	133	
Max.01-M					18	132	
Max.3-MW					16		
Max.08-M							
Max.8-MW						118	
Max.TMW				2	8	85	
97,5% Perz.							
MMW				1	6	53	
Gl.JMW					11		

0

Zeitraum: AUGUST 2015 Messstelle: LIENZ / Tiefbrunnen

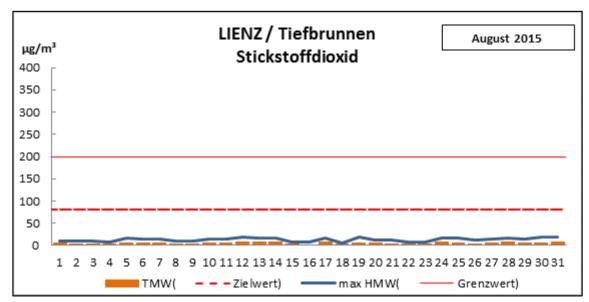
Anzahl der Tage mit Grenzwertüberschreitungen


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit				0		
Zielwerte menschliche Gesundheit				0		
Zielwerte Ökosysteme, Vegetation				n.a.		
Ozongesetz						
Alarmschwelle					0	
Informationsschwelle					0	
langfristiger Zielwert menschliche Gesundheit					0	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlini	e)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				n.a.		
ÖAW: Richtwerte Mensch				0	7	
ÖAW: Richtwerte Vegetation	_			n.a.	n.a.	

 $[\]ddot{\text{U}}\text{1})$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

ÖAW: SO2-Kriterium für Siedlungsgebiete

VDI-RL 2310: NO-Grenzwert


¹⁾ An den Stationen Innsbruck/Andechsstraße, Innsbruck/Fallmerayerstraße, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Beurteilungsunterlagen:

A. Inländische Grenzwerte

I. Immissionsschutzgesetz-Luft (BGBl. I Nr. 115/1997 i.d.g.F.)

a) Schutz der menschlichen Gesundheit

G	renzwerte in μg/m³ (aus	genommen CO: ang	egeben in mg/m³)		
Luftschadstoff	HMW	MW3	MW8	TMW	JMW
Schwefeldioxid	200 *)			120	
Kohlenmonoxid			10		
Stickstoffdioxid	200				30 **)
PM_{10}				50 ***)	40
PM _{2.5}					25****
	Alar	mwerte in μg/m³		•	
Schwefeldioxid		500			
Stickstoffdioxid		400			
	Zie	lwerte in μg/m³		•	
Stickstoffdioxid				80	
PM_{10}				50	20
PM _{2.5}					25

^{*)} Drei Halbstundenmittelwerte pro Tag, jedoch maximal 48 Halbstundenmittelwerte pro Kalenderjahr bis zu einer

b) Schutz der Ökosysteme und der Vegetation (BGBl. II Nr. 298/2001 i.d.g.F.)

	Gren	zwerte in µg/m³								
Luftschadstoff	HMW	MW3	MW8	TMW	JMW					
Schwefeldioxid					201)					
Stickstoffoxide					30					
	Ziel	werte in μg/m³								
Schwefeldioxid				50						
Stickstoffdioxid				80						
¹) für das Kalenderjahr und Winterhalbjahr (1.Oktober bis 31.März)										

II. Ozongesetz 1992: (BGBl. I Nr. 210/1992 i.d.g.F.)

Informationsschwelle	180 µg/m³ als Einstundenmittelwert (stündlich gleitend)		
Alarmschwelle	240 μg/m³ als Einstundenmittelwert (stündlich gleitend)		
Zielwert	120 μg/m³ als Achtstundenmittelwert *)		
*) Dieser Wert darf im Mittel über drei Jahre an nicht mehr als 25 Tagen pro Kalenderjahr überschritten werden und gilt ab 2010.			

 ^{**)} Drei Haiostundenmittelwerte pro 1ag, jedoch maximal 46 riaiostundenmittelwerte pro Kalenderjam bis zu einer Konzentration von 350 μg/m³ gelten nicht als Überschreitung.
 **) Der Immissionsgrenzwert von 30 μg/m³ ist ab 1. Jänner 2012 einzuhalten. Die Toleranzmarge von 5 μg/m3 gilt gleich bleibend ab 1. Jänner 2010 und wird 2012 evaluiert. Auf Grundlage dieser Evaluierung hat der Bundesminister für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft im Einvernehmen mit dem Bundesminister für Wirtschaft, Familie und Jugend gegebenenfalls den Entfall der Toleranzmarge mit Verordnung anzuordnen.

^{***)} Pro Kalenderjahr sind 25 Tagesgrenzwertüberschreitungen zulässig.

^{****)} Der Immissionsgrenzwert von 25 µg/m³ ist ab 1.1.2015 einzuhalten, die Toleranzmarge von 20% wird von 1.1.2009 und danach alle 12 Monate um einen jährlich gleichen Prozentsatz bis auf 0% am 1. Jänner 2015 reduziert.

III. Zweite Verordnung gegen forstschädliche Luftverunreinigungen: (BGBl. Nr. 199/1984 i.d.g.F.) Grenzwerte für Schwefeldioxid (SO₂):

§ 4 (1) Als Höchstanteile im Sinne des § 48 lit.b des Forstgesetzes 1975, die nach dem Stand der wissenschaftlichen Erkenntnisse und der Erfahrung noch nicht zu einer der Schadenanfälligkeit des Bewuchses entsprechenden Gefährdung der Waldkultur führen (wirkungsbezogene Immissionsgrenzwerte, gemessen an der Empfindlichkeit der Fichte), werden bei Messungen in der Luft festgesetzt:

Schwefeldioxid (SO ₂)				
	April - Oktober	November - März		
97,5 Perzentil für den Halbstundenmittelwert (HMW) in den Monaten	0,07 mg/m³	0,15 mg/m³		
Die zulässige Überschreitung des Grenzwertes, die sich aus der Perzentilregelung ergibt, darf höchstens 100% des Grenzwertes betragen.				
Tagesmittelwert (TMW)	0,05 mg/m ³	0,10 mg/m³		
Halbstundenmittelwert (HMW)	0,14 mg/m³	0,30 mg/m³		

IV. Empfehlungen der Österreichischen Akademie der Wissenschaften, Kommission für die Reinhaltung der Luft:

Nov. 1998: Luftqualitätskriterien Stickstoffdioxid (NO ₂)			August 1989: Luftqualitätskriterien Ozon (O3)					
Wirkungsbezogene Immissionsgrenzkonzentrationen für NO_2 in $\mathrm{mg/m^3}$		Wirkungsbezogene Immissionsgrenzkonzentrationen für $\rm O_3$ in $\rm mg/m^3$				en		
	HMW	TMW	JMW		HMW	1MW	8MW	Vegetations- periode *)
zum Schutz des Menschen	0,200	0,080	0,030	zum Schutz des Menschen	0,120	-	0,100	-
zum Schutz der Vegetation	0,200	0,080	0,030	zum Schutz der Vegetation (einschließlich empfindlicher Pflanzenarten)	0,300	0,150	0,060	0,060
Zielvorstellungen zum Schutz der Ökosysteme	0,080	0,040	0,010					
*) als Mittelwert der Siebenstundenmittelwerte in der Zeit von 09.00 – 16.00 Uhr MEZ während der Vegetationsperiode								

Die höchstzulässige Konzentration von Schwefeldioxid (SO ₂) in der freien Luft beträgt				
	in Erholungsgebieten		in allgemeinen Siedlungsgebieten	
	Schwefeldioxid in mg/m³ Luft			
	April - Oktober	November – März		
Tagesmittelwert	0,05	0,10	0,20	
Halbstundenmittelwert	0,07	0,15	0,20	
			Die Überschreitung dieses Halbstundenmittelwertes dreimal pro Tag bis höchstens 0,50 mg/m³ gilt nicht als Luftbeeinträchtigung.	

B. Ausländische Grenzwerte, wo keine österreichischen vorhanden sind

V. VDI-Richtlinie 2310:

Grenzwerte für Stickstoffmonoxid (NO)			
Tagesmittelwert	500 μg/m³		
Halbstundenmittelwert	1000 μg/m³		

IG-L Überschreitungen:

PM10 Staub

PM10 kontinuierlich

IG-L Grenzwertüberschreitungen im Zeitraum 01.08.15-00:30 - 01.09.15-00:00
Tagesmittelwerte > 50µg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

PM10 gravimetrisch

IG-L Grenzwertüberschreitungen im Zeitraum 01.08.15-00:30 - 01.09.15-00:00 Tagesmittelwerte > 50µg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

STICKSTOFFDIOXID

IG-L Grenzwertüberschreitungen im Zeitraum 01.08.15-00:30 - 01.09.15-00:00 Halbstundenmittelwert > 200µg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

IG-L Alarmwertüberschreitungen im Zeitraum 01.08.15-00:30 - 01.09.15-00:00 Dreistundenmittelwert > $400 \mu g/m3$

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

IG-L Zielwertüberschreitungen im Zeitraum 01.08.15-00:30 - 01.09.15-00:00 Tagesmittelwert > 80μg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

SCHWEFELDIOXID

IG-L Grenzwertüberschreitungen im Zeitraum 01.08.15-00:30 - 01.09.15-00:00 Halbstundenmittelwert > 200µg/m3

MESSSTELLE Datum WERT [μg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

IG-L Alarmwertüberschreitungen im Zeitraum 01.08.15-00:30 - 01.09.15-00:00 Dreistundenmittelwert > 500µg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

ÖKOSYSTEME / VEGETATION Zielwertüberschreitungen im Zeitraum 01.08.15-00:30 - 01.09.15-00:00

Tagesmittelwert > 50µg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

IG-L Grenzwertüberschreitungen im Zeitraum 01.08.15-00:30 - 01.09.15-00:00
Tagesmittelwert > 120µg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

KOHLENMONOXID

IG-L Grenzwertüberschreitungen im Zeitraum 01.08.15-00:30 - 01.09.15-00:00 Achtstundenmittelwert > 10mg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

OZON

Überschreitungen der Alarmschwelle lt. Ozongesetz im Zeitraum 01.08.15-00:30 - 01.09.15-00:00

Einstundenmittelwert > 240µg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

Überschreitungen der Informationsschwelle lt. Ozongesetz im Zeitraum 01.08.15-00:30 - 01.09.15-00:00

Einstundenmittelwert > 180µg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

Zielwertüberschreitungen lt. Ozongesetz im Zeitraum 01.08.15-00:30 - 01.09.15-00:00

Achtstundenmittelwert > 120µg/m3

MESSSTELLE	Datum	WERT[µg/m3]
HÖFEN / Lärchbichl	04.08.2015-24:00	128
HÖFEN / Lärchbichl	06.08.2015-24:00	128
HÖFEN / Lärchbichl	07.08.2015-24:00	128
HÖFEN / Lärchbichl	08.08.2015-24:00	135
HÖFEN / Lärchbichl	11.08.2015-24:00	131
HÖFEN / Lärchbichl	12.08.2015-24:00	153
HÖFEN / Lärchbichl	13.08.2015-24:00	142
HÖFEN / Lärchbichl	14.08.2015-24:00	134
HÖFEN / Lärchbichl	31.08.2015-24:00	128
Anzahl: 9		
HEITERWANG Ort / B179	04.08.2015-24:00	130
HEITERWANG Ort / B179	06.08.2015-24:00	122
HEITERWANG Ort / B179	07.08.2015-24:00	127

HEITERWANG Ort / B179	08.08.2015-24:00	136
HEITERWANG Ort / B179	09.08.2015-24:00	124
HEITERWANG Ort / B179	10.08.2015-24:00	124
HEITERWANG Ort / B179	11.08.2015-24:00	126
HEITERWANG Ort / B179	12.08.2015-24:00	153
HEITERWANG Ort / B179	13.08.2015-24:00	126
HEITERWANG Ort / B179	14.08.2015-24:00	137
HEITERWANG Ort / B179	31.08.2015-24:00	130
Anzahl: 11		
INNSBRUCK / Andechsstraße	11.08.2015-24:00	130
INNSBRUCK / Andechsstraße	12.08.2015-24:00	133
INNSBRUCK / Andechsstraße	13.08.2015-24:00	141
INNSBRUCK / Andechsstraße	14.08.2015-24:00	153
INNSBRUCK / Andechsstraße	31.08.2015-24:00	134
Anzahl: 5		
INNSBRUCK / Sadrach	04.08.2015-24:00	122
INNSBRUCK / Sadrach	06.08.2015-24:00	131
INNSBRUCK / Sadrach	09.08.2015-24:00	129
INNSBRUCK / Sadrach	10.08.2015-24:00	122
INNSBRUCK / Sadrach	11.08.2015-24:00	143
INNSBRUCK / Sadrach	12.08.2015-24:00	150
INNSBRUCK / Sadrach	13.08.2015-24:00	155
INNSBRUCK / Sadrach	14.08.2015-24:00	162
INNSBRUCK / Sadrach	15.08.2015-24:00	125
INNSBRUCK / Sadrach	28.08.2015-24:00	128
INNSBRUCK / Sadrach	29.08.2015-24:00	126
INNSBRUCK / Sadrach	30.08.2015-24:00	129
INNSBRUCK / Sadrach	31.08.2015-24:00	142
Anzahl: 13		
NORDKETTE	04.08.2015-24:00	135
NORDKETTE	05.08.2015-24:00	134
NORDKETTE	06.08.2015-24:00	133
NORDKETTE	07.08.2015-24:00	139
NORDKETTE	08.08.2015-24:00	139
NORDKETTE	09.08.2015-24:00	140
NORDKETTE	10.08.2015-24:00	137
NORDKETTE	11.08.2015-24:00	148
NORDKETTE	12.08.2015-24:00	153
NORDKETTE	13.08.2015-24:00	163
NORDKETTE	14.08.2015-24:00	172
NORDKETTE	15.08.2015-24:00	140
NORDKETTE	28.08.2015-24:00	124
NORDKETTE	29.08.2015-24:00	123
NORDKETTE	30.08.2015-24:00	136
NORDKETTE	31.08.2015-24:00	150
Anzahl: 16	01.00.2010 21.00	100
WÖRGL / Stelzhamerstraße	04.08.2015-24:00	128
WÖRGL / Stelzhamerstraße	06.08.2015-24:00	125
WÖRGL / Stelzhamerstraße	07.08.2015-24:00	124
WÖRGL / Stelzhamerstraße	09.08.2015-24:00	124
WÖRGL / Stelzhamerstraße	10.08.2015-24:00	125
WÖRGL / Stelzhamerstraße	11.08.2015-24:00	142
WÖRGL / Stelzhamerstraße	12.08.2015-24:00	135
WÖRGL / Stelzhamerstraße	13.08.2015-24:00	137
WÖRGL / Stelzhamerstraße	14.08.2015-24:00	132
WÖRGL / Stelzhamerstraße	29.08.2015-24:00	121
WÖRGL / Stelzhamerstraße	31.08.2015-24:00	135
Anzahl: 11	21.00.2010 24.00	100

	_	0.4.00.0045.04.55	
KRAMSACH /	Angerberg	04.08.2015-24:00	131
KRAMSACH /	Angerberg	06.08.2015-24:00	129
KRAMSACH /	Angerberg	07.08.2015-24:00	121
KRAMSACH /	Angerberg	09.08.2015-24:00	128
KRAMSACH /	Angerberg	10.08.2015-24:00	130
KRAMSACH /	Angerberg	11.08.2015-24:00	147
KRAMSACH /	Angerberg	12.08.2015-24:00	141
KRAMSACH /	Angerberg	13.08.2015-24:00	140
KRAMSACH /	Angerberg	14.08.2015-24:00	140
KRAMSACH /	Angerberg	15.08.2015-24:00	124
KRAMSACH /	Angerberg	28.08.2015-24:00	123
KRAMSACH /	Angerberg	29.08.2015-24:00	126
KRAMSACH /	Angerberg	30.08.2015-24:00	123
KRAMSACH /	Angerberg	31.08.2015-24:00	141
Anzahl: 14			
KUFSTEIN /	Festung	04.08.2015-24:00	133
KUFSTEIN /	Festung	05.08.2015-24:00	125
KUFSTEIN /	Festung	06.08.2015-24:00	133
KUFSTEIN /	Festung	07.08.2015-24:00	135
KUFSTEIN /	Festung	08.08.2015-24:00	123
KUFSTEIN /	Festung	09.08.2015-24:00	128
KUFSTEIN /	Festung	10.08.2015-24:00	132
KUFSTEIN /	Festung	11.08.2015-24:00	150
KUFSTEIN /	Festung	12.08.2015-24:00	143
KUFSTEIN /	Festung	13.08.2015-24:00	139
KUFSTEIN /	Festung	14.08.2015-24:00	144
KUFSTEIN /	Festung	15.08.2015-24:00	127
KUFSTEIN /	Festung	29.08.2015-24:00	123
KUFSTEIN /	Festung	30.08.2015-24:00	127
KUFSTEIN /	Festung	31.08.2015-24:00	136
Anzahl: 15	-		